Главная > Динамика частиц в фазовом пространстве
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

Оптическая аналогия.

Очевидно, что прямолинейные траектории движущихся частиц подобны лучам света в однородной среде и что многие понятия оптических систем имеют аналоги при фокусировке заряженных частиц. Не удивительно, что методы лучевой оптики часто используются в теории фокусировки электронных пучков. И наоборот, определенные методы описания движения частиц, такие, например, как метод, описывающий прохождение частиц через линейные системы, используются в оптике. К тому же существует полная аналогия между гамильтоновой механикой и геометрической оптикой, хотя хорошо известно, что аналогия не нашла широкого применения в оптике. Причины этого носят исторический характер. Гамильтонов формализм используется в вопросах теории динамики, аналогичных геометрической оптике,

недавно, в то время как соответствующие проблемы в оптике описывались другими методами намного раньше.

Аналогия между гамильтоновой механикой и геометрической оптикой заключается в формальном тождестве между гамильтоновой характеристической функцией и эйконалом. Из этой связи следует, что волновая скорость и обратно пропорциональна импульсу Хотя эта аналогия первоначально использовалась, чтобы продемонстрировать связь между классической и волновой механикой ((см. [10]), она также может быть использована, чтобы связать проекцию луча с импульсом. Это проиллюстрировано на рис. 1.6. Прямая линия обозначает луч, определенный как нормаль к фронту волны, а пунктирные линии обозначают фронт волны. Расстояние между фронтами равной фазы — длина волны к, пропорциональная скорости волны и. Из рисунка видно, что длина волны в направлении, отличном от направления распространения волны, меняется обратно пропорционально косинусу угла между ними, так что равно Если, однако, мы можем связать проекцию луча с импульсом, тогда проекция импульса меняется в. зависимости от угла обратно пропорционально изменению скорости. Далее будет проведена параллель между механикой и геометрической оптикой и показано, что такую связь действительно можно осуществить. Тогда можно использовать в оптике все понятия преобразования фазового пространства. Применим также некоторые простые свойства оптических линз, соответствующие преобразованиям фазового пространства в динамических системах. Хотя будет использовано только несколько примеров из оптики, ясно, что вся теория, развитая в этой работе, годится для решения задач оптики. Методы динамики частиц в оптике будут очень тесно связаны с содержанием гл. 3, где динамические системы близки к оптическим. В статической электронной оптике, в которую время явно не входит, очень полезны оптические аналогии.

1
Оглавление
email@scask.ru