§ 23. Уравнение прямой, проходящей через две точки
 
Прямая, проходящая через две точки 
 представляется уравнением 
Оно выражает, что данные точки 
 и «текущая» точка 
 лежат на одной прямой (§ 22). 
Уравнение (1) можно представить (см. ниже замечание) в виде 
Это уравнение выражает пропорциональность катетов в прямоугольных треугольниках 
 и 
 изображенных на рис. 22, где 
Пример 1. Составить уравнение прямой, проходящей через точки (1; 5) и (3; 9). Решение. Формула (1) дает: 
т. е. 
 или 
 
Формула (2) дает 
 Отсюда снова находим 
Замечание. В случае, когда 
 один из знаменателей равенства (2) равен нулю; тогда 
Рис. 22 
 
уравнение (2) надо понимать в том смысле, что соответствующий числитель равен нулю (см. ниже пример 2, а также сноску на с. 37). 
Пример 2. Составить уравнение прямой, проходящей через точки 
 Уравнение (1) дает: 
Уравнение (2) запишется в виде 
здесь знаменатель левой части равен нулю. Понимая уравнение (4) в вышеуказанном смысле, полагаем числитель левой части равным нулю. Получаем прежний результат