Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 6. Предельные циклы и автоколебанияПосле рассмотрения состояний равновесия перейдем к периодическим движениям, которые, как мы знаем, могут встречаться в системах, описываемых уравнениями
Если
то движение Мы будем называть предельный цикл устойчивым, если существует такая область на фазовой плоскости, содержащая этот предельный цикл, — окрестность
Рис. 240.
Рис. 241. Если же, наоборот, в любэй сколь угодно малой окрестности
Рис. 242. Наряду с устойчивостью предельного цикла как траектории, определение которой было только что дано (ее часто называют орбитной устойчивостью), можно говорить об устойчивости в смысле Ляпунова периодического движения, соответствующего предельному циклу. Именно, периодическое движение
выполняются неравенства:
при любых Устойчивость предельного цикла (равно как и устойчивость в смысле Ляпунова соответствующих периодических движений) определяется знаком его «характеристического показателям
где Для исследования устойчивости периодического движения
Это — система линейных дифференциальных уравнений с периодическими коэффициентами периода
где В рассматриваемой задаче (в силу автономности исходной системы уравнений (5.1)) один из характеристических показателей равен нулю, а другой равен Прежде чем переходить к доказательству сформулированного условия устойчивости предельного цикла, мы остановимся, забегая по некоторым пунктам немного вперед, на принципиальном вопросе о физической интерпретации изолированных замкнутых траекторий — предельных циклов. Если мы потребуем, чтобы в реальных физических системах качественный характер возможных движений сохранялся при произвольных малых изменениях самих систем (на языке математики — при произвольных малых изменениях правых частей системы (5.1)), то, как это мы увидим в дальнейшем, мы этим запретим существование неизолированных замкнутых кривых. В системах, удовлетворяющих этому требованию устойчивости качественного характера движений при малых изменениях динамической системы, — в так называемых «грубых» системах, — могут быть только изолированные замкнутые траектории (только предельные циклы) и притом обязательно с характеристическим показателем, отличным от нуля (поэтому орбитная устойчивость предельного цикла влечет за собой устойчивость по Ляпунову всех соответствующих ему периодических движений). С физической точки зрения представляет интерес следующее замечание, которое можно сделать относительно движений, отображаемых устойчивым предельным циклом. Именно, можно сказать, что для таких движений период и «амплитуда» не зависят от начальных условий в том смысле, что все соседние движения (соответствующие целой области начальных значений — так называемой области устойчивости в большом) асимптотически приближаются к периодическому движению по предельному циклу, которое имеет определенный период и определенную «амплитуду». Вышеприведенные свойства периодических движений, отображаемых предельными циклами с отрицательными характеристическими показателями: а) устойчивость по отношению к малым изменениям самой системы; б) независимость (в указанном смысле) периода и «амплитуды» от начальных условий — составляют характерную черту реальных автоколебательных процессов. Конкретное исследование уравнений вида (5.1), с которыми пришлось иметь дело в различных случаях автоколебаний, также показало на ряде примеров, что если уравнения (5.1) с достаточной точностью отображают законы движения реальной автоколебательной системы, то они обязательно имеют предельные циклы с отрицательным характеристическим показателем, и что стационарные периодичёские процессы действительно отображаются этими предельными циклами. Отсюда мы делаем такой вывод: реальные автоколебательные процессы, устанавливающиеся в системах, достаточно точно отображаемых уравнениями (5.1), математически соответствуют предельным циклам с отрицательным характеристическим показателем. Наличие таких предельных циклов в фазовом портрете рассматриваемой динамической системы является необходимым и достаточным условием для возможности (при надлежащих начальных условиях) существования автоколебаний в системе, т. е. для того, чтобы, система была автоколебательной [3, 5]. Неустойчивый предельный цикл, имеющий положительный характеристический показатель, само собой разумеется, также может содержаться в фазовом портрете «грубых» систем. Однако такой предельный цикл не соответствует реальному периодическому процессу; он играет лишь роль «водораздела», по обе стороны от которого траектории имеют различное поведение. Ясно, что это обстоятельство также имеет существенный физический интерес. Например, наличие неустойчивого цикла дает объяснение так называемого «жесткого» режима, при котором малые начальные отклонения в системе затухают, а большие, наоборот, нарастают.
|
1 |
Оглавление
|