Главная > Теория колебаний (Андронов А.А.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ПРЕДИСЛОВИЕ КО ВТОРОМУ ИЗДАНИЮ

Из трех авторов настоящей книги в живых остался только пишущий эти строки. Александр Адольфович Витт, участвовавший в написании первого издания книги наравне с двумя другими авторами, но не указанный в числе авторов вследствие печальной ошибки, умер в 1937 году.

Александр Александрович Андронов умер в 1952 году, т. е. через 15 лет после выхода первого издания книги. Все эти годы А. А. Андронов и его ученики продолжали плодотворно работать в области нелинейной теории колебаний, и в частности того ее раздела, который излагался в первом издании книги (автономные системы с одной степенью свободы). Однако пишущий эти строки после выхода первого издания уже не принимал участия в дальнейшей разработке вопросов, излагавшихся в первом издании книги. Один из учеников А. А. Андронова, Н. А. Железцов, взял на себя труд изложить для второго издания книги новые результаты, достигнутые (главным образом школой А. А. Андронова) в области теории автономных систем с одной степенью свободы. Это потребовало от Н. А. Железцова переработки и значительного дополнения текста первого издания. В работе принимала участие Е. А. Леонтович-Андронова. Переработанный и заново написанный текст указан подстрочными сносками в соответствующих местах книги.

С. Э. Хайкин

ПРЕДИСЛОВИЕ К ПЕРВОМУ ИЗДАНИЮ

Вряд ли есть в настоящее время необходимость специально обосновывать важное значение колебательных процессов в современной физике и технике. Можно без преувеличения сказать, что нет почти области в этих науках, в которой колебания не играли бы той или иной роли, не говоря уже о том, что ряд областей физики и техники всецело базируется на колебательных явлениях. Достаточно, например, указать на область электромагнитных колебаний, включающую в себя и оптику, на учение о звуке, на радиотехнику и прикладную акустику.

Общность колебательных процессов, их разнообразие и в то же время их специфическое своеобразие играют существенную роль в установлении внутренних связей между весьма разнородными, на первый взгляд, явлениями. Этим обстоятельством, как мне кажется, и обусловливается главным образом принципиальное значение и важность интересующей нас области.

Весьма существенно следующее: в области колебаний особенно отчетливо выступает взаимодействие между физикой и математикой, влияние потребностей физики на развитие математических методов и обратное влияние математики на наши физические знания. Несомненно, что в развитии таких математических проблем, как дифференциальные уравнения в частных производных, интегральные уравнения, в частности краевые задачи, разложение произвольных функций по ортогональным функциям и т. п., физические запросы сыграли не последнюю роль. Но и обратно, также несомненно, что только благодаря развитию этих математических дисциплин сделалось возможным углубленное понимание основных физических колебательных явлений.

До сравнительно недавнего времени интерес физиков, а также и техников, тлавным образом, хотя и не исключительно, был сосредоточен на «линейных» колебательных задачах, т. е. на таких, математическая формулировка которых приводила к линейным дифференциальным уравнениям, обыкновенным или в частных производных.

Относящийся сюда математический аппарат прекрасно разработан. Ряд результатов теории выкристаллизовался в определенную систему понятий и весьма общих положений. Благодаря тому, что физики

этими понятиями и положениями постоянно оперируют, применяя их к конкретным задачам, они приобрели уже, если так можно выразиться, физическую наглядность. Для физика такое понятие, как логарифмический декремент, значение его в явлениях резонанса, такие принципы, как принцип суперпозиции и связанное с ним разложение в ряд Фурье, и вообще спектральный подход, наличие гармонических колебаний в системе с степенями свободы, несомненно являются не только отвлеченными математическими понятиями и положениями; они связаны для него неразрывно с комплексом физических явлений. И это обстоятельство имеет существенное значение: оно дает возможность физику как бы инстинктивно, почти без вычислений разбираться в сравнительно сложных вопросах, легко обнаруживать связь между разнородными явлениями и, наконец, имеет, и это может быть самое важное, большую эвристическую силу.

Но в последнее время в ряде вопросов физики и техники выдвинулся новый класс колебательных проблем, для которых аппарат линейной теории колебаний оказался или недостаточным или даже совершенно неприменимым.

Существенную роль в привлечении интереса к проблемам нового рода сыграло введение электронных ламп, открывшее новые, весьма целесообразные пути в вопросах как генерации, так и приема электромагнитных колебаний. Чрезвычайно важное применение получили эти новые явления в радиотехнике. Все те громадные успехи, которые были ею достигнуты в наше время, стали возможными только благодаря электронным лампам. Но и физика приобрела исключительно ценное, часто незаменимое орудие исследования. Для всестороннего охвата всех относящихся сюда разнообразнейших явлений, а также большого числа важных интересных явлений в акустике и механике, математический аппарат линейных дифференциальных уравнений абсолютно недостаточен. В его рамки заведомо не укладываются как раз те явления, которые здесь наиболее характерны и интересны. Дело в том, что дифференциальные уравнения, которые адэкватным образом описывают эти явления, заведомо нелинейны. Сообразно с этим мы говорим о «нелинейных» системах.

Довольно естественно, что, особенно вначале, было известное стремление, трактуя эти новые, хотя и явно нелинейные, проблемы, по возможности не слишком удаляться от столь привычной линейной терминологии и столь же привычных линейных математических методов, приспособляя их так или иначе к новым обстоятельствам. При этом приходилось добавлять придуманные дополнения, без чего нельзя было, конечно, получить нужных ответов.

Такое «линеаризирование» всегда искусственно, редко бывает полезным, большей частью вообще ничему не научает, а иногда и прямо вредно. И действительно, в литературе известны ошибочные утверждения, вошедшие даже в учебники, обусловленные таким незаконным линеаризированием.

Другой путь для овладения нелинейными проблемами, о которых идет речь, состоит в том, что каждая конкретная проблема трактуется уже как нелинейная, но индивидуально, с применением того или иного, наиболее к ней подходящего метода и с учетом ее специфических особенностей. Этот путь, конечно, сам по себе правилен. Идя по нему, ряд исследователей получил весьма ценные результаты, сохранившие все свое значение и в настоящее время. Сюда в первую очередь нужно отнести работы Ван-дер-Поля, сыгравшие существенную роль в развитии интересующей нас области. И в настоящее время иногда удобно в том или ином случае идти по этому пути.

Но не говоря уже о том, что фактически такие решения отдельных задач не имели достаточного математического обоснования, весь этот путь в качестве, так сказать, большой дороги вряд ли целесообразен, так как он не ведет к установлению тех общих точек зрения, той базы, как математической, так и физической, которая необходима для достаточно полного и всестороннего охвата области нелинейных колебанийг в уже известной нам ее части, и, что еще важнее, для успешного дальнейшего планомерного развития.

А между тем основы математического аппарата, адэкватного не только отдельным задачам, но и всему циклу проблем нелинейных колебаний, которые нас интересуют, существуют давно. Они заложены в знаменитых работах Пуанкаре и Ляпунова, работах, преследовавших, правда, совершенно другие цели. На связь этих работ с нашими проблемами колебаний впервые обратил внимание один из авторов настоящей книги. Исследования авторов, несомненно, сыграли весьма существенную роль в приспособлении этого аппарата для изучения колебательных проблем. Ими же были применены эти методы для решения ряда новых конкретных задач. Их же работами подведена солидная математическая база и под результаты других авторов, результаты, как уже сказано, весьма ценные, но разрозненные и до этих пор такой базы не имевшие.

Таким образом, основы необходимого общего математического аппарата существуют. Аппарат этот существенно труднее и сложнее, чем линейный, и это лежит в природе вещей. Физические процессы, охватываемые им, значительно сложнее и разнообразнее линейных процессов, являющихся лишь весьма узким частным случаем. Нужно сказать, что в настоящее время нелинейный аппарат еще гораздо менее разработан, чем линейный, и, конечно, гораздо менее привычен. Но много уже сделано, общие черты теории, которые дают направление дальнейшему развитию, существуют, существует и рабочий аппарат, дающий возможность планомерно решать ряд конкретных задач нелинейной теории колебаний.

Дальнейшее естественное развитие общей теории на этой базе будет способствовать, по моему мнению, тому, что и в сложной области нелинейных колебаний еще в большей мере, чем это уже имеет место

сейчас, выкристаллизуются свои специфические общие понятия, положения и методы, которые войдут в обиход физика, сделаются привычными и наглядными, позволят ему разбираться в сложной совокупности явлений и дадут мощное эвристическое оружие для новых исследований.

Физик, интересующийся современными проблемами колебаний, должен, по моему мнению, уже теперь участвовать в продвижении по этому пути. Он должен овладеть уже существующими математическими методами и приемами, лежащими в основе этих проблем, и научиться их применять.

Известным препятствием служило до сих пор почти полное отсутствие в нашей и, насколько я знаю, в заграничной литературе соответственного систематического изложения общих основ теории нелинейных колебаний и их физических применений, рассчитанного на физиков. Настоящая книга стремится заполнить этот пробел. Основная цель ее - ввести читателя в круг идей, лежащих в основе теории нелинейных колебаний и ее применений. Центр тяжести изложения лежит сообразно с этим не в решении возможно большего количества отдельных задач, а в выяснении основных положений и основных методов, адэкватных для области нелинейных колебаний в целом. Это, конечно, не значит, что в книге не уделено достаточного внимания конкретным проблемам. Наоборот, разбору таких проблем, и в первую очередь проблем, с которыми физику и технику постоянно приходится иметь дело, уделяется довольно много места. Но эти проблемы рассматриваются под углом зрения общих положений, они являются примерами и иллюстрациями применения общих методов. Иногда для выяснения той или другой стороны теоретических рассуждений авторы пользуются несколько искусственными примерами, но зато выпукло оттеняющими эти рассуждения.

Изложение авторов, базирующееся, как было упомянуто, на работах Пуанкаре и Ляпунова, обладает одной весьма положительной чертой: в математической трактовке физических проблем часто бывает так, что цепь математических рассуждений, связывающая исходные уравнения с окончательными результатами, допускающими физическую интерпретацию, весьма длинна, причем отдельные ее звенья такой интерпретации не поддаются. Авторы удачно сумели воспользоваться тем обстоятельством, что излагаемые ими методы позволяют придать физический смысл и отдельным звеньям этой цепи. Это значительно оживляет теорию и облегчает ее усвоение.

В вопросах принципиальных авторы там, где это целесообразно, выходят из рамок собственной темы. Сюда относятся, например, довольно подробный интересный разбор вопросов идеализации физических проблем, вопросы, связанные с ролью начальных условий; сюда же может быть отнесен ряд рассуждений, относящихся к так называемым релаксационным колебаниям.

Достаточно обстоятельно излагаюгся методы так называемого качественного интегрирования, дающие ряд ценных указаний относительно протекания колебательных процессов. По моему мнению, авторы поступают правильно, иллюстрируя эти методы на хорошо известных и привычных случаях линейных систем, где, конечно, применимы более простые, прямые методы. Важному вопросу о существовании периодических решений уделено соответственное внимание. Детально изложены вопросы, относящиеся к проблемам с «малой» нелинейностью, проблемам, имеющим в расчетном смысле чрезвычайно важное значение. Подробно разобран вопрос об устойчивости.

Все эти проблемы рассмотрены применительно к наиболее простому случаю системы с одной степенью свободы без внешней силы (так называемые автономные системы). То же относится и к разобранным в книге конкретным задачам и примерам. Эти вопросы изложены с большой полнотой; но читатель не найдет в книге ни задач, связанных с воздействием внешней силы, ни задач, относящихся к системам с несколькими степенями свободы и к системам с распределенными параметрами. Между тем все эти проблемы несомненно важны и интересны. Однако если принять во внимание, как велик объем всего материала, относящегося к нелинейным колебаниям, с одной стороны, и основную цель книги — ввести читателя в круг общих идей и методов — с другой, то выбор авторов станет понятным. Автономные системы с одной степенью свободы - наиболее простые системы, и они в то же время являются теми элементами, которые лежат в известном смысле в основе всех более сложных систем.

Теоретический аппарат, необходимый для рассмотрения этих последних, базируется на тех общих положениях, которые изложены здесь и представляют собой его дальнейшее развитие. Таким образом, хотя в настоящей книге разобран сравнительно узкий цикл вопросов, по существу она является введением в общую теорию нелинейных колебаний.

Я не сомневаюсь, что свежая и оригинальная книга, предлагаемая вниманию читателя, будет ценным вкладом в нашу литературу по колебаниям.

1935 г. Л. Мандельштам.

1
Оглавление
email@scask.ru