Главная > Цифровые фильтры (Хемминг Р.В.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

1.6. Распределение статистики

Теперь вернемся к тому, что, вероятно, представляет наиболее трудную проблему для начинающего изучать математическую статистику: к понятию распределения статистики (или статистических параметров, таких как среднее значение или дисперсия выборки).

Предположим, что мы сделали ряд измерений и что по этой выборке вычислили одну или несколько статистик. Например, мы можем случайным образом выбрать 1000 американцев из общего населения около 200 миллионов и измерить рост каждого. Исходя из полученных данных, можно вычислить среднее значение выборки х. Дисперсия выборки определяется следующим образом:

Для ясности, обычно используют греческие буквы для обозначения статистик модели и латинские буквы для соответствующей статистики выборки.

Хорошо бы знать указанные два числа для выборки, которую мы взяли. Однако, если от этих чиеел ждут большой пользы, то сразу же возникает вопрос: что разумного можно получить для уточнения среднего значения, если весь процесс повторить снова, используя

Таблица 1.6.1. (см. скан)

Связь статистик выборки и множества

разную случайную выборку 1000 американцев? Короче говоря, что такое «среднее» распределения статистики? Очевидно, повторение всего процесса выбора людей, проведение измерений и вычисление среднего даст нам распределение величин среднего значения х (и распределение дисперсии

В примере с округлением имелась уникальная модель для исходного множества чисел, из которого извлекались округленные значения, а в примере с гауссовым распределением достаточно оценить два неизвестных параметра множества: распределение по статистикам выборки Можно поинтересоваться, какая существует связь между этими парами чисел (табл. 1.6.1). В руководствах по статистике доказывается, что для любого распределения среднее выборки есть несмещенная оценка среднего значения исходной совокупности. Аналогично дисперсия выборки определяется несмещенной оценкой Несмещенная оценка означает, что в среднем оценки не слишком велики и не слишком малы, т. е. среднее значение статистики равно той величине, которая оценивается.

Если выборка достаточно велика тогда центральная предельная теорема утверждает, что статистика, называемая средним значением, имеет распределение, очень близкое к гауссовому (нормальному) распределению

с параметрами

Упражнение

(см. скан)

1
Оглавление
email@scask.ru