Главная > Теория обнаружения, оценок и модуляции, Т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2.6.3. Краткие итоги

Мы подробно обсудили общую гауссову задачу и установили, что достаточная статистика является разностью между двумя квадратичными формами:

Особенно простым частным случаем является случай, когда ковариационные матрицы по обеим гипотезам равны. Тогда

и качество критерия полностью характеризуется величиной

Когда ковариационные матрицы не равны, применение критерия отношения правдоподобия по-прежнему не встречает затруднений, однако вычисление качества критерия затруднительно (напомним, что уже не применимо, так как не является гауссовой). В простейшем случае диагональных ковариационных матриц с одинаковыми элементами были выведены точные выражения для ошибок. В общем случае точные выражения возможны, но они слишком громоздки, чтобы ими можно было пользоваться. Указанная невозможность получить удобные выражения для качества побуждает нас в следующем параграфе рассмотреть границы качества и приближенные выражения.

Прежде чем закончить с общей гауссовой задачей, следует отметить, что аналогичные результаты можно получить для случая гипотез и для задачи оценки. Некоторые из этих результатов выводятся в задачах вне основного текста.

1
Оглавление
email@scask.ru