Главная > Теория обнаружения, оценок и модуляции, Т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3. Представления случайных процессов

3.1. Введение

В этой главе мы кратко рассмотрим некоторые методы описания (задания) случайных процессов, необходимые для изложения последующего материала книги. Следует особо выделить так называемый прямой метод. Существует много других способов задания колебаний и случайных процессов, однако какой из них является наилучшим, — сильно зависит от конкретной задачи, которую необходимо решать. Рациональное задание зачастую делает решение почти тривиальным.

Рис. 3.1. Типичная форма сигнала.

Несколько методов описания сигналов сразу же приходит в голову. Это прежде всего задание во временной области. Типичный сигнал, образованный импульсами различной длительности, изображен на рис. 3.1. Задание сигнала во времени часто характеризует его форму.

Хорошо ли такое представление? Чтобы ответить на этот вопрос, нужно указать, что мы собираемся делать с сигналом. На рис. 3.2 иллюстрируются два возможных случая.

Рис. 3.2. Операции, осуществляемые над сигналами: а — в ограничителе; б - в идеальном фильтре нижних частот.

В первом случае сигнал пропускается через ограничитель и необходимо определить выходное напряжение. Задание во времени позволяет нам найти выходной сигнал путем наблюдения. Во втором случае мы пропускаем сигнал через идеальный фильтр нижних частот и хотим вычислить мощность сигнала на его выходе. В этом случае временной подход затруднителен;

Однако если воспользоваться преобразованием Фурье сигнала

то задача становится прямой. Мощность, заключенная в колебании у (0, равна

Итак, как хорошо известно, временное и частотное описание сигналов и помех играют важную роль в анализе систем. Приведенный пример подчеркивает то обстоятельство, что выбор наиболее целесообразного описания зависит от интересующей нас задачи.

Рис. 3.3. Три гипотетические системы связи с активной паузой и различными формами сигналов и аддитивной помехи.

Для обоснования другого метода задания сигналов рассмотрим простейшие системы связи, изображенные на рис. 3.3. Когда справедлива гипотеза 1, передается детерминированный сигнал когда верна гипотеза 0, передается сигнал Конкретные формы

передаваемых сигналов в системах а, б, в различны. Помехи в каждой идеализированной системе конструируются путем умножения двух детерминированных колебаний на независимые нормальные случайные величины, имеющие нулевые средние, и сложения результирующих колебаний. Мешающие колебания в каждой системе будут иметь различную форму.

Приемник должен решить, какая из гипотез является истинной. Мы видим, что передаваемые сигналы и аддитивные помехи в системах а, б, в существенно отличаются по форме. Однако во всех случаях их можно записать в виде

где - ортонормированные (ортонормальные) функции, т. е.

Функции для трех указанных систем будут различны. Очевидно, что поскольку

то следует основывать наше решение на наблюдаемых значениях коэффициентов этих двух функций. Следовательно, алгоритм испытания можно записать как

Но это задача классической теории обнаружения, с которой мы уже встречались в гл. 2.

Следует обратить внимание на одно важное обстоятельство: любая пара ортонормированных функций обеспечивает одинаковую достоверность обнаружения. Поэтому как временнбму, так и частотному заданию свойственно выделять существенные особенности конкретной задачи. Мы называем этот третий метод задания сигналов и помех как представление ортогональными рядами.

Этот метод задания детерминированных сигналов и случайных процессов излагается в настоящей главе.

1
Оглавление
email@scask.ru