Главная > Теория кодов, исправляющих ошибки
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

7.3. ПОРОЖДАЮЩИЙ МНОГОЧЛЕН

Особенно простым видом идеалов являются главные идеалы, состоящие из всевозможных произведений элементов из на некоторый фиксированный многочлен Они будут обозначаться через Многочлен называется порождающим многочленом идеала.

Действительно, каждый идеал в является главным идеалом, а каждый циклический код имеет порождающий многочлен.

Следующая теорема содержит доказательство этого факта и других основных свойств циклических кодов.

Теорема 1. Пусть ненулевой идеал кольца т. е. циклический код длины

В имеется единственный нормированный многочлен наименьшей степени.

(b). , т. е. порождающий многочлен идеала

делит

Любой многочлен в кольце однозначно записывается в виде где степень меньше чем Размерность равна Таким образом, сообщение кодируется словом

Если то порождается (как подпространство в строками порождающей матрицы

(Здесь использованы очевидные обозначения.)

Доказательство (а). Предположим, что оба многочлена нормированы и имеют минимальную степень Тогда многочлен имеет более низкую степень, что приводит к противоречию, за исключением случая .

(b). Пусть Воспользуемся в равенством где . В силу линейности кода так что Следовательно, .

(c). Воспользуемся в равенством где это означает, что что приводит к противоречию, за исключением случая

(d), (е). Согласно любой многочлен равен многочлену Следовательно, в кольце

где

Таким образом, в кольце (но не в код состоит из произведений на многочлены степени не больше Всего имеется линейно независимых произведений такого вида, а именно Соответствующие векторы и являются строками матрицы Это означает также, что размерность кода равна

Теперь дадим несколько примеров циклических кодов.

Двоичные коды Хэмминга. Напомним, что в § 1.7 проверочная матрица двоичного кода Хэмминга длины определялась как матрица, столбцами которой являются все различных ненулевых -векторов. Если теперь а — примитивный элемент поля и § 4.2), то все элементы различны и могут быть представлены как различные ненулевые двоичные -векторы.

Таким образом, проверочная матрица двоичного кода Хэмминга с параметрами может быть представлена в виде

где каждый элемент должен быть заменен на соответствующий двоичный вектор-столбец длины Например, для кода

где корень уравнения

Вектор принадлежит коду

где

Согласно свойству гл. 4 вектор тогда и только тогда, когда делит Таким образом, код состоит из всех кратных многочлена или, иными словами, верна следующая теорема.

Теорема 2. Определенный ранее код Хэмм инга является циклическим кодом с порождающим многочленом

Согласно теореме 1 порождяющзя мятриця кодз равна

Например, для

Упражнение (6). Проверить, что строки матрицы (7.4) ортогональны строкам матрицы (7.6).

Коды БЧХ, исправляющие две ошибки. Код исправляющий две ошибки, длины был определен соотношением (3.11) как код с проверочной матрицей

каждый элемент которой опять должен быть заменен соответствующим двоичным -вектором. Теперь

по свойству где минимальный многочлен элемента тогда и только тогда, когда Но согласно свойству неприводимы и согласно упражнению (15) гл. 4. различны. Поэтому окончательно имеем: тогда и только тогда, когда Таким образом, может быть сформулирована следующая теорема.

Теорема 3. Код БЧХ, исправляющий две ошибки, имеет параметры и является циклическим кодом с порождающим многочленом

Доказательство. Равенство следует из упражнения (15) гл. 4. Минимальное расстояние было найдено в гл. 3. (Другое доказательство приведено ниже в теореме 8.)

Упражнение. (7). Показать, что порождающий многочлен кода БЧХ длины 15 с исправлением двух ошибок, определенного в § 3 гл. 3, равен (использовать § 4.4). Выписать порождающую матрицу кода.

Замечание. До сих пор ничего не было сказано о минимальном расстоянии циклического кода. Это объясняется тем, что определить в общем случае очень трудно. Граница БЧХ (доказываемая ниже теорема 8) дает нижнюю границу для случая, когда известны корни многочлена . В гл. 8 мы увидим,

что в некоторых случаях минимальное расстояние может быть найдено с помощью многочлена Мэттсона — Соломона.

- Упражнения. (8). (Недвоичные коды Хэмминга.) (а). Код - Хэмминга над полем GF(q) задается проверочной матрицей размерности столбцами котррой являются все ненулевые -векторы над первая ненулевая координата которых равна 1. Код 6 из гл. 1 является кодом Доказать, что код является совершенным с параметрами

Доказать, что если взаимно просты, то эквивалентен циклическому коду с нулями где примитивный корень степени из единицы.

(9). Укороченные циклические коды. Иногда, практические ограничения, накладываемые на кодовые длины, таковы, что для требуемых кодовых длин не существует хороших циклических кодов. В этом случае можно использовать укороченный циклический код который получается из циклического кода путем выбора всех кодовых слов, начинающихся последовательными нулями и отбрасыванием этих нулей. Результирующий код уже, конечно, не будет циклическим. Докажите, однако, что найдется такой многочлен что является идеалом кольца многочленов по модулю многочлена и наоборот, что каждый идеал такого кольца является укороченным циклическим кодом.

1
Оглавление
email@scask.ru