Главная > Теория кодов, исправляющих ошибки
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 2. Нелинейные коды, матрицы Адамара, t-схемы и код Голея

2.1. НЕЛИНЕЙНЫЕ КОДЫ

Одно из основных назначений кодов заключается в исправлении ошибок в каналах связи с шумами, и линейные коды, введенные в гл. 1, имеют много практических преимуществ с этой точки зрения. Но если мы хотим получить наибольшее возможное число кодовых слов с заданным минимальным расстоянием, то иногда необходимо использовать нелинейные коды.

Например, предположим, что нам нужен код длины 11, исправляющий две ошибки. Наибольший линейный код содержит 16 кодовых слов, в то время как имеется нелинейный код, показанный на рис. 2.1, содержащий 24 кодовых слова, что дает увеличение на 50%. (Это код Адамара, см. § 2.3.)

Определим нелинейные коды следующим образом.

Определение. Назовем -кодом множество из векторов длины (с компонентами из некоторого поля такое, что любые два вектора различаются между собой по крайней мере в позициях и является наибольшим числом с этим свойством.

В этой главе все коды будут двоичными. Еще раз напомним, что квадратные скобки обозначают линейный код, в то время как круглые скобки используются для кода, который может быть (или не быть) линейным. Двоичный линейный -код является -кодом.

Обычно мы предполагаем, что не существует координатной позиции, в которой каждое кодовое слово имеет нуль (в противном случае это был бы -код). Кроме того, так как расстояния между кодовыми словами не изменяются, если ко всем кодовым словам прибавить фиксированный вектор, можно при желании предположить, что код содержит нулевой вектор.

Будем говорить, что два двоичных кода и эквивалентны, если один может быть получен из другого перестановкой символов и добавлением фиксированного вектора, или более формально, если существуют подстановка на множестве и вектор а такие, что Если

и линейные коды, то это определение сводится к определению эквивалентности, данному в § 1.7. Так, например, коды

эквивалентны (если положить ).

Рис. 21. Пример нелинейного (11,24, 5)-кода Адамара (первые 12 строк образуют -код Адамара 12; все 24 строки образуют (11, 24, 5)-код Адамара

В общем случае эквивалентность недвоичных кодов определяется следующим образом. Пусть и будут кодами длины над полем из элементов. Тогда и эквивалентны, если существуют подстановок пп на множестве из элементов и подстановка о на множестве (позиций) такие, что

Другими словами, сначала в каждой позиции переставляются элементы поля, а затем сами координатные позиции. Если оба кода являются линейными, то могут быть использованы только подстановки порожденные скалярными множителями и автоморфизмами поля (см. § 4.6).

Определение. Обозначим через число кодовых слов веса -коде Числа называются весовым спектром кода Ясно, что Весовой спектр мы уже использовали при вычислении вероятностей ошибки в гл. 1.

Если вектор 0 является кодовым словом, то наблюдатель, находящийся в нулевом слове, увидел бы на расстоянии от себя кодовых слов. Для линейного кода картина была бы одной и той же в любой кодовой точке. (Почему?) Однако в нелинейном коде не обязательно так, как показывает пример кода (Если же это справедливо, то говорят, что код инвариантен относительно расстояния. Код Нордстрома — Робинсона (§ 2.8) инвариантен относительно расстояния; другие примеры будут даны в гл. 6.) Поэтому для нелинейного кода полезно рассматривать среднее число кодовых слов на расстоянии от фиксированного кодового слова.

Определение. Спектр расстояний кода состоит из чисел где

Заметим, что

Для линейных кодов весовой спектр и спектр расстояний совладают. Кроме того, код а полученный сдвигом, имеет такой же спектр расстояний, что и код

Полезно геометрическое представление этих кодов. Двоичный вектор длины задает координаты вершины единичного куба размерности . В таком случае -код представляет собой некоторое подмножество этих вершин (рис. 2.2).

На этом геометрическом языке проблема теории кодирования заключается в выборе как можно большего числа вершин куба с заданным попарным расстоянием между ними.

Эта проблема представляет собой проблему упаковки, так как в коде с минимальным расстоянием евклидово расстояние между кодовыми словами не менее чем Поэтому построение

Рис. 2.2. Куб, иллюстрирующий -код (а); четырехмерный куб, иллюстрирующий -код (б)

-кода означает построение непересекающихся шаров радиуса К d/2 с центрами в вершинах куба.

Замечание. Задача (нерешенная). (2.1). Аналогичная проблема расположения точек на поверхности единичной сферы размерности также не решена. Другими словами, где должны построить дома на поверхности планеты нелюдимов, чтобы максимизировать минимальное расстояние между любыми двумя домами? Эта проблема также важна в теории связи, так как представляет собой проблему нахождения наилучших сигналов при передаче по каналу с ограниченной полосой.

1
Оглавление
email@scask.ru