Главная > Техническая электродинамика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 6. ВОЛНЫ У ГРАНИЦЫ РАЗДЕЛА СРЕД

6.1. Отражение и преломление плоских волн на плоской границе раздела

ПОСТАНОВКА ЗАДАЧИ

Явления на границе раздела двух разнородных сред: отражение, преломление и поглощение электромагнитных волн — играют большую роль в электродинамике. В данной главе рассматривается простейший класс задач такого рода: падение плоской волны - на плоскую границу раздела, которую можно считать бесконечно протяженной практически с размерами, намного превышающими Полученные результаты справедливы также для криволинейных границ и неплоских волн, если их радиус кривизны значительно больше длины волны. Эти условия относятся к приближениям геометрической оптики (см. 7.6) и позволяют рассматривать электромагнитные волны в виде лучей.

Рис. 6.1

Характеристики явлений отражения и преломления можно разбить на два класса:

— угловые — законы для углов отражения и преломления, вытекающие из особенностей волнового процесса и одинаковые для волн любой физической природы;

— динамические — законы для напряженностей отраженной и преломленной волн, изменения фазы и поляризации, зависящие от конкретных граничных условий.

ВЕКТОРНАЯ ЗАПИСЬ МНОЖИТЕЛЯ БЕГУЩЕЙ ВОЛНЫ

Вначале покажем, что волна, распространяющаяся в произвольном направлении вдоль оси (рис. 6.1), имеет в точке множитель бегущей волны вида

где волновой вектор, определяемый по радиус-вектор точки углы между ортом ел и положительным направлением

осей координат. Следовательно,

так как расстояние от точки до начала координат

УГЛОВЫЕ ХАРАКТЕРИСТИКИ

Рассмотрим явления, возникающие при падении плоской однородной волны на плоскую границу раздела двух произвольных сред (рис. 6.2). Среды характеризуются коэффициентами распространения и волновыми сопротивлениями (см. параграф

3.5). Очевидно, что волновые векторы падающей, отраженной и преломленной волн равны соответственно Задай угол падения падающей волны. Определим угол отражения и угол преломления отраженного и преломленного лучей.

Назовем плоскостью распространения волны плоскость, проходящую через луч и нормаль к граничной поверхности. Для падающей волны она именуется плоскостью падения и на рис. 6.2 совмещена с

Рис. 6.2

Векторы всех трех волн должны удовлетворять граничным условиям во всех точках плоскости и в любой момент времени. Поэтому независимо от характера граничных условий должны совпадать фазовые множители этих волн:

При фиксированном отсюда сразу вытекает равенство частот всех волн Проекция а следовательно, и проекции на ось у равны нулю. А это означает, что все волновые векторы лежат в плоскости падения. Поэтому их проекции на ось должны быть равны между собой:

что позволяет сформулировать следующие законы:

— закон отражения: угол отражения равен углу падения

— закон преломления Снеллиуса: отношение синусов углов преломления и падения равно отношению комплексных

коэффициентов распространения в первой и второй средах:

Из этого равенства следует, что в общем случае угол преломления О может быть комплексным. Если ограничиться рассмотрением диэлектриков с несущественными потерями, то и закон Снеллиуса запишется в виде

где коэффициенты преломления сред.

Для диэлектриков синусы углов наклона лучей относительно нормали пропорциональны фазовым скоростям волн в соответствующих средах и обратно пропорциональны их коэффициентам зреломления.

1
Оглавление
email@scask.ru