Главная > Теория упругости анизотропного тела
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 2. ПРОСТЕЙШИЕ СЛУЧАИ УПРУГОГО РАВНОВЕСИЯ

В этой главе рассматриваются наиболее простые случаи распределения напряжений в анизотропных телах, преимущественно в стержнях и пластинках. Формулы для составляющих напряжений и перемещения мы приводим без вывода, так как они получаются элементарным путем. Во всех случаях, рассмотренных в этой главе (а также и в последующих), принимается во внимание известный принцип Сен-Венана, позволяющий значительно упростить в ряде случаев постановку задач.

§ 12. Растяжение стержня под действием осевой силы и собственного веса

Простейшей задачей теории упругости является задача о растяжении стержня осевой силой, приложенной к концу. Эта задача была рассмотрена еще Фойгтом ([38], стр. 631) и более подробно А. Л. Рабиновичем [85]. Рассмотрим цилиндрический или призматический стержень, изготовленный из однородного материала, обладающего анизотропией (прямолинейной) самого общего вида. Пусть один конец его закреплен, а к другому приложены усилия, приводящиеся к равнодействующей направленной вдоль оси стержня. Поместим начало координат в центре тяжести закрепленного сечения, ось z направим по оси стержня, а оси х и у направим произвольно (рис. 17). Обозначим через длину и площадь поперечного сечения недеформированного стержня и через - упругие

постоянные (коэффициенты деформации) из уравнений, выражающих обобщенный закон Гука, которые в этом общем случае будут иметь вид (3.8). Собственный вес пока не будем принимать во внимание.

Если допустить, что усилия по нижнему концу и реакции по верхнему концу распределены равномерно и нормальны к плоскостям крайних сечений, то составляющие напряжений и деформации, удовлетворяющие уравнениям равновесия упругого тела (11.1) и условиям на поверхности, определятся по формулам

Рис. 17.

Определяя перемещения путем интегрирования, получим

Здесь постоянные, характеризующие «жесткое» перемещение тела в пространстве, не сопровождаемое деформацией; первые три характеризуют перемещения при повороте вокруг осей координат, а вторые три — поступательные перемещения вдоль осей. Эти постоянные мы определим из условий закрепления стержня. Считая закрепленным бесконечно малый элемент на оси z около начала координат, имеем при

условия:

Удовлетворяя им, получим

Формулы (12.2) показывают, что в общем случае анизотропии стержень не только удлиняется в направлении силы и сокращается в поперечных направлениях, но еще испытывает сдвиги во всех плоскостях, параллельных координатным. Эти сдвиги характеризуются коэффициентами которые выражаются через модули Юнга или сдвига и коэффициенты взаимного влияния первого и второго рода:

Рис. 18.

Поперечные сечения остаются плоскими, но вследствие сдвигов наклоняются к линии действия силы. Стержень, который имеет форму прямоугольного параллелепипеда, деформируясь, станет косоугольным параллелепипедом (рис. 18). Абсолютное удлинение стержня (точнее, его оси), равно:

Если в каждой точке имеется плоскость упругой симметрии, нормальная к оси, то

у стержня в виде прямоугольного параллелепипеда боковые грани останутся прямоугольными, а углы поперечного сечения изменятся. Наконец, если стержень является ортотропным, т. е. имеет еще плоскости упругой симметрии, параллельные оси, то удлинение не будет сопровождаться сдвигами и углы граней параллелепипеда не исказятся.

Все формулы справедливы, строго говоря, только для одного специального случая распределения усилий и реакций. Но на основании принципа Сен-Венана ими можно пользоваться и в случае усилий, приводящихся к силам распределенным по концам произвольно; нужно только исключить из рассмотрения узкие области около концов, где основная картина напряжений и деформаций будет искажена вследствие местных напряжений и деформаций, зависящих от закона распределения усилий и от способа закрепления. Это замечание относится и к другим случаям деформации стержней, а также и пластинок.

Если стержень, изображенный на рис. 17 (закрепленный в вертикальном положении), деформируется только под действием собственного веса, то мы получим ([38], § 331)

где у — удельный вес материала.

Принимая, что верхний конец закреплен так же, как и у стержня, растягиваемого силой, т. е. перемещения удовлетворяют условиям (12.4), получим

Отсюда видно, что поперечные сечения не остаются плоскими, а принимают форму поверхности второго порядка. В общем случае анизотропии ось искривляется и уравнение изогнутой оси будет

При этом центр нижнего конца перемещается не только вдоль оси но и в стороны, и проекции перемещения его

на оси координат определяются по формулам

Если же стержень закреплен так, что центр нижней поверхности остается на вертикали, то перемещение его по вертикали будет прежним (см. третью формулу (12.12)), а ось стержня примет форму кривой

Искривления оси не будет только в том случае, когда постоянные равны нулю (например, когда имеется плоскость упругой симметрии, нормальная к оси).

Как показывают формулы (12.1) и (12.9), распределение напряжений в растянутом анизотропном стержне совпадает с распределением в таком же стержне из изотропного материала, т. е. не зависит от упругих свойств. Влияние анизотропии сказывается лишь на деформациях. Это относится не только к случаю растяжения, но и ко всем другим случаям, рассмотренным в настоящей главе.

1
Оглавление
email@scask.ru