Главная > Теория упругости анизотропного тела
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 54. Чистое кручение однородного ортотронного стержня эллиптического или кругового сечения

Рассмотрим ортотропный стержень эллиптического сечения, у которого одна из плоскостей упругой симметрии нормальна к оси z или образующей, а две другие параллельны оси. Эти две плоскости необязательно в данной точке пересекают плоскость сечения по линиям, параллельным главным осям эллипса; линия пересечения одной из этих двух плоскостей упругой симметрии с главной осью эллипса образует угол а, не равный 0° и 90° (рис. 83).

Рис. 83.

Обозначим через коэффициенты деформации для направлений главных осей эллипса х, у и через длины главных полуосей эллипса. Рассматривая простое или чистое кручение, мы будем обозначать скручивающий момент и жесткость при кручении — (без индекса t). В данном случае формулы для функций напряжений, жесткости при кручении, напряжений и перемещений мы определим совершенно элементарным путем на основании §§ 51, 53 и получим, как при совместном действии изгибающих и скручивающих моментов (при

Составляющие напряжений не зависят от упругих постоянных. Жесткость является функцией и угла а, который образует главное направление упругости с направлением главной оси эллипса (рис. 83).

Обозначим через модули сдвига для главных направлений упругости — отношения главных

Таблица 19 (см. скан) Значения отношения эллиптического сечения


модулей и осей эллипса: Выражения для и жесткости запишутся так:

Жесткость будет наибольшей, если плоскость упругой симметрии с наибольшим модулем сдвига проходит через большую ось 2а сечения , и наименьшей, если эта плоскость проходит через малую ось эллипса . Эти наибольшая и наименьшая жесткости равны (см. [29], стр. 57—59):

В таблице 19 приведены численные значения отношения различных а для двух значений отношения главных модулей сдвига: и пяти значений отношения главных осей эллипса .

Из таблицы видно, что при отношение жесткостей невелико (не больше двух), однако при большой разнице между модулями сдвига, т.е. при малом разница

между наибольшей и наименьшей жесткостями становится значительной, особенно для вытянутых эллипсов.

На рис. 84 показаны графики изменения отношений в зависимости от угла для двух значений и двух значений отношения осей эллипса с.

Рис. 84.

Укажем еще значение функции кручения для стержня эллиптического сечения, характеризующей искривление плоскости этого сечения при кручении (стержень ортотропный, плоскости упругой симметрии параллельны плоскостям, проходящим через ось z и главные оси эллипса

1
Оглавление
email@scask.ru