Главная > Теория упругости анизотропного тела
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 52. Связь напряжений и перемещений с функцией усложненной комплексной переменной

Функцию напряжений, удовлетворяющую уравнению (51.4), и напряжения и перемещения можно выразить через одну функцию усложненной комплексной переменной комплексный потенциал. В самом деле, разыскивая решение однородного уравнения (51.4) (при в виде

мы заключаем, что коэффициент должен удовлетворять уравнению

Теорема 2, доказанная в главе 3, § 20, показывает, что при любых коэффициентах корни уравнения (52.2) будут чисто мнимыми или комплексными (если только или не равны нулю). Совершенно так же, только заменив на мы докажем отсутствие вещественных корней у уравнения (52.2) (если, конечно, один или оба крайние коэффициенты или не равны нулю; в противном случае корни уравнения будут вещественными).

Таким образом, во всех случаях, исключая упомянутые особые, имеем

где

комплексный параметр кручения и сопряженная величина (ср. § 49), а частное решение неоднородного уравнения (51.4). Составляющие напряжения и перемещение выражаются

через функцию следующим образом:

Граничное условие для комплексного потенциала имеет вид

Задача о кручении анизотропного стержня с областью сечения сводится к такой же задаче для изотропного стержня, у которого область поперечного сечения получается из заданной путем аффинного преобразования

О том, как из получается дает представление рис. 25 для случая плоской задачи, где приходится иметь дело с двумя преобразованными областями (а в случае обобщенной плоской деформации и кручения — даже с тремя —

Решив уравнения (52.8) относительно получим:

Если контур сечения анизотропного стержня задан уравнением то задача сводится к задаче о кручении изотропного стержня, контур сечения которого задан уравнением

Остановимся коротко на случае ортотропного стержня. Направляя оси х и у нормально к плоскостям упругой симметрии, запишем уравнения обобщенного закона Гука так:

модули сдвига для плоскостей

Подставляя значения коэффициентов в уравнение (51.4) и вводя обозначение

получим вместо (51.4)

Задачу о кручении ортотропного стержня легко свести к задаче для изотропного стержня несколькрши способами, вводя в (52.13) замену переменных. Одна из замен такова:

Другие замены указаны в работах Сен-Венана [121], Лейбензона [17, 19], А. Локшина [75] и в книге Лява [24].

1
Оглавление
email@scask.ru