Главная > Преобразования Фурье, Уолша, Хаара и их применение в управлении, связи и других областях
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Б. Особые свойства дискретизированных функций.

С переходом от исходной функции к дискретизированной функции кардинальным образом изменяется ее спектральное представление. Этот вопрос имеет принципиальное значение.

Вместо одного, показанного на рис. 3.2,а спектра непрерывной функции при ее дискретизации получается последовательность периодически повторяющихся спектров. В зависимости от частоты дискретизации (от того, какой взята величина интервала дискретизации) получаются для дискретизированной функции множественные спектры, показанные на рис. 3.2, б, 3.2, в или 3.2,г. Спектр первого из указанных видов получается при малой частоте дискретизации (при больших интервалах дискретизации г). Спектры же, изображенные на рис. 3.2,в и 3.2,г, получаются при соответственно большей и еще большей частоте дискретизации. При представленном на рис. 3.2, б наложении спектров оказывается практически невозможным восстановление спектра исходной непрерывной функции по спектру дискретизированной функции При спектрах, изображенных на рис. 3.2, в и 3.2, г, это уже является возможным. Нужно лишь применить фильтр, пропускающий основную часть спектра и подавляющий все другие его составляющие.

Показанные на рис. 3.2,б, 3.2,в и 3.2, г спектры связаны следующим образом с исходным спектром

При имеем При изменении от до спектры дискретизированного сигнала периодически повторяются со смещением по оси частот на Размерность отличается от размерности так как измеряется в единицах времени. Различными в связи с этим являются масштабы по оси ординат для графиков, изображенных на рис. 3.2,а и на следующих позициях рис. 3.2.

В гл. II была отмечена тесная связь между преобразованиями Фурье и Лапласа и была введена в рассмотрение передаточная функция, представляющая собой отношение лапласовых изображений выходной и входной координат системы Т Обычно передаточная функция характеризуется расположением на комплексной плоскости ее нулей и полюсов (подробнее об этом будег сказано в разделе настоящего параграфа). При дискретизации исходной функции происходит периодическое повторение конфигурации нулей и полюсов передаточной функции со смещением ее вдоль мнимой оси каждый раз тоже на величину Например, при изображенном на рис. 3.2,д (взятом в рамку) исходном расположении на комплексной плоскости нулей (кружки) и полюсов (крестики) данная конфигурация нулей и полюсов периодически повторяется, как показано на этом рисунке.

В разделах поясняется, почему при дискретизации непрерывной функции получается указанное выше периодическое повторение спектров;

Рис. 2.2

на примере показывается, почему получается при дискретизации функции периодическое повторение расположения ее полюсов.

Ранее было сказано о том, что дискретизация непрерывной функции должна производиться так, чтобы по дискретизированной функции могла быть восстановлена исходная непрерывная функция. Было также сказано о том, что это возможно, если не происходит наложения спектров, появляющихся при дискретизации. Граничным в этом отношении является расположение спектров, иллюстрируемое рис. 3.2, е. Возникает вопрос о том, как при известной предельной круговой частоте исходного спектра (или при соответствующей ей угловой частоте ) следует выбрать величину интервала дискретизации для того, чтобы не происходило наложения спектров и получалось показанное на рис. 3.2, в относительное их расположение. Ответ на этот вопрос дает теорема отсчетов. Формулировка этой теоремы и ее доказательство, основанное на использовании преобразования Фурье, приведены в разделе

1
Оглавление
email@scask.ru