Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 62. Гриновская функция электронов в металлеПроведенное в §§ 56—58 рассмотрение относилось к движению одного электрона в решетке, на которую наложено еще внешнее магнитное поле. Покажем теперь, что полученные при этом результаты остаются по существу справедливыми и для квазичастиц (электронов проводимости) в электронной жидкости реального металла, — меняется лишь несколько определение входящих в соотношения величиною. А. Бычков, Л. П. Горьков, 1961; J. М. Luttinger, 1961). Подходящим математическим аппаратом для общего рассмотрения электронной жидкости является аппарат гриновских функций. В главе II этот аппарат был развит для «свободной» ферми-жидкости. Выясним, в каких пунктах он должен быть изменен для жидкости в решетке. Гриновская функция электронной жидкости (при температуре В § 8 было показано, что однородность системы позволяет полностью определить координатную зависимость матричных элементов операторов и тем самым позволяет записать общее выражение гриновской функции в пространственно-временном представлении в виде Для электронной жидкости в решетке инвариантность матричных элементов, выражаемая равенством (8,3), имеет место только для трансляций на периоды решетки, т. е. при
где
к — квазиимпульс состояния; Выразив гриновскую функцию через эти матричные элементы и переходя затем к компонентам Фурье по времени (подобно тому, как это было сделано в § 8), получим теперь вместо формулы (8,7) разложение
с прежним смыслом обозначений Наличие незатухающих одночастичных элементарных возбуждений вблизи ферми-поверхности металла проявляется в том, что при
При наличии вырождения по спинам должно еще производиться суммирование по двум спиновым состояниям. Определение энергетического спектра по гриновской функции сводится, в принципе, к задаче о собственных значениях некоторого .интегро-дифференциального линейного оператора. Основные принципы диаграммной техники в координатном пространстве для рассматриваемого случая остаются теми же, что и в обычной ферми-жидкости. В частности, введя собственно-энергетическую функцию
Применив слева к уравнению (14,4) оператор
Вблизи полюса G-функции (по переменной При этом индекс
Для электронной ферми-жидкости в металле оно заменяет собой обычное уравнение Шредингера. Его собственные значения определяют, как уже сказано, спектр согласно Для перехода к случаю наличия слабого внешнего магнитного поля надо заметить, что при калибровочном преобразовании векторного потенциала
где Разумеется, смысл самой функции Далее, поскольку проведенное в §§ 57, 58 рассмотрение квазиклассического случая целиком основывалось на существовании гамильтониана вида (62,7), то и эти результаты непосредственно переносятся на электронную жидкость. При этом, однако, возникает вопрос о том, что именно следует понимать под напряженностью поля, действующего на электрон проводимости (а тем самым и под векторным потенциалом А). Строго говоря, это должно быть точное микроскопическое значение поля, создаваемого в данной точке Представим микроскопическую напряженность в виде суммы ее среднего значения (которое, по принятой в макроскопической электродинамике терминологии, есть магнитная индукция В) и быстро меняющейся части Н. Векторный потенциал, отвечающий однородному полю В, возрастает на всем протяжении размеров орбиты, принимая характерные значения Таким образом, правило квазиклассического квантования (58,7) для электронной жидкости, в металле записывается как
где теперь Как и в задаче об одном электроне в решетке с центром инверсии, учет спина электронов проводимости приводит к расщеплению уровней в магнитном поле на две компоненты:
Величина
|
1 |
Оглавление
|