Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 59. Тензор эффективных масс электрона в решеткеРассмотрим точку Если в этой точке нет вырождения (за исключением лишь возможного крамерсовского вырождения по спину — см. конец § 55), то в ее окрестности функция
Тензор В пренебрежении спин-орбитальным взаимодействием гамильтониан электрона имеет вид (56,1). Подставим в уравнение Шредингера с этим гамильтонианом волновую функцию в виде
Тогда уравнение примет вид
где В окрестности точки Так как
Для определения квадратичной по q поправки надо учесть член с q в операторе возмущения в первом, а член с q — во втором порядке теории возмущений. В результате получим для
суммирование производится по всем Для упрощения записи в обозначении матричных элементов здесь и ниже опускаем диагональный индекс Пусть теперь на кристалл наложено однородное магнитное поле Н. Тогда, согласно (56,7), гамильтониан, действующий на функции обобщенного квазиимпульса Q, получается из (59,1) заменой q на оператор
Получающийся таким образом гамильтониан
пригоден, разумеется, лишь в той же области энергий, что и исходная формула (59,1). Это значит, что (помимо условия слабости поля (56,3)) предполагается, что рассматриваемые уровни Ландау расположены не слишком высоко. В этом смысле величины q и Q должны рассматриваться как малые (возрастающий же характер потенциала А проявляется в том, что даже в слабом поле нельзя считать, что А мало по сравнению с Следующие после (59,7) члены в гамильтониане содержат поле Н в «чистом» (т. е. без сопровождающих операторов Рассмотрим сначала поставленный вопрос без учета спин-орбитального взаимодействия. Интересующий нас линейный по Н член может возникнуть только из линейного по А члена в исходном точном гамильтониане электрона (56,2), т. е. путем усреднения по волновой функции
(равенство связано с выбранной уже калибровкой с
где
есть просто среднее значение магнитного момента электрона в состоянии Подчеркнем, что поправку (59,9) можно добавить к гамильтониану (59,7), не опасаясь, что этот эффект уже частично учтен заменой (59,6); действительно, линейные по Н члены в (59,7) при Распишем выражение (59,10) по правилу матричного умножения, учтя, что в силу (59,4)
(и аналогично для
можно переписать М в виде
Отметим, что М, а тем самым и вся поправка (59,9) обращается в нуль, если кристалл обладает центром инверсии. Действительно, при одновременном обращении времени и инверсии состояние электрона (без учета его спина) не изменяется, а потому не изменится и правая сторона равенства (59,11); между тем магнитный момент при этом преобразовании должен изменить знак. Учтем теперь спин-орбитальное взаимодействие в кристалле, добавив к гамильтониану (56,1) спин-орбитальный член
Оператор я имеет простой физический смысл: непосредственно коммутируя гамильтониан (с учетом
Аналогично, произведя при наличии магнитного поля обычную замену К магнитному же моменту (59,11) надо прибавить еще и спиновый магнитный момент свободного электрона, так что будет
С учетом спин-орбитального взаимодействия второй член в этом выражении отнюдь не равен нулю даже Вычислим тензор
Рассматривая (59,9) и (59,15) как возмущение, найдем поправку к энергии во втором порядке теории возмущений, оставив при этом только перекрестные (по (59,9) и (59,15)) члены. Эта поправка (все еще остающаяся оператором—матрицей — по спиновым переменным) имеет вид (56,12) с тензором
где Все сказанное относилось к невырожденным (кроме как по спину) состояниям. Если же при ЗадачаНайти квазиклассические уровни энергии для частицы с квадратичным законом дисперсии (59,1) в магнитном поле произвольного направления. Решение. Приведем тензор Тогда
где
взятого по объему эллипсоида (I). Заменой переменных
где вектор v в q-пространстве имеет компоненты
где
Подставив в (58,7), найдем уровни энергии
|
1 |
Оглавление
|