Главная > Общий курс физики. Молекулярная физика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 42. Стационарная диффузия. Вычисление коэффициента диффузии

Как уже упоминалось, кинетическая теория газов позволяет просто объяснить факт медленности процесса диффузии, несмотря на большие значения скоростей тепловых движений молекул. Это обусловлено тем, что молекулы газа, чтобы попасть из одной точки в другую, вследствие столкновений вынуждены пройти длинный зигзагообразный путь, во много раз превосходящий расстояние по прямой между этими точками.

Кроме такого качественного объяснения, кинетическая теория позволяет и количественно оценить величину коэффициента диффузии и выразить его через молекулярные величины — длину свободного пробега молекул и скорости их тепловых движений.

Рассмотрим площадку 5 в сосуде с газовой смесью, перпендикулярную к оси X (рис. 51), вдоль которой поддерживается

постоянная разность концентраций (речь идет, следовательно, о стационарном процессе). Примем для определенности, что Из-за тепловых движений молекулы интересующего нас компонента будут переходить через площадку 5 как слева направо, так и справа налево. Ввиду существующей разности концентраций по обе стороны площадки возникнет некоторый диффузионный поток вдоль оси X, равный, очевидно, разности между числом молекул пересекающих площадки 5 в 1 с (перпендикулярно к ее плоскости) в направлении положительных значений X (вправо), и числом молекул пересекающих то же сечение и за то же время в противоположном направлении (влево):

Рис. 51.

Как определить число молекул, пересекающих площадки? Если бы все молекулы двигались с одинаковой скоростью направленной по оси X, то число молекул, переходящих в 1 с площадку в было бы равно где число молекул в единице объема.

В действительности существует распределение молекул по скоростям, но для грубой оценки мы примем, что у всех молекул одна и та же скорость, равная средней скорости Примем также, что тепловые скорости молекул равномерно распределены по трем взаимно перпендикулярным направлениям. Тогда из всех молекул единицы объема движется вдоль оси X и из них половина движется в положительном направлении оси X, т. е. по направлению к площадке, в то время как другая половина движется в противоположном направлении — от нее.

Следовательно, число молекул пересекающих площадки в 1 с слева направо, и число молекул пересекающих ту же площадку в противоположном направлении, выразятся соотношениями:

Здесь концентрации молекул с одной и с другой стороны от площадки. Относительно значений величин необходимо заметить, что они изменяются вдоль оси X вследствие столкновений молекул между собой. Поэтому к выделенной нами площадке молекулы подходят, имея те значения концентраций которые создались при последнем столкновении перед площадкой. Значит, мы должны считать, что это те числа молекул в единице объема, которые были на расстоянии (средняя длина свободного пробега) от площадки, по обе стороны от нее.

Диффузионный поток следовательно, определяется выражением

где разность концентраций между точками, отделенными друг от друга расстоянием в Разность эту нетрудно определить, если известно значение градиента концентрации — (будем полагать, что изменяется только по оси т. е. вместо можно писать Так как есть разность концентраций, приходящаяся на единицу длины, то на расстоянии она равна:

Эта формула справедлива, если X достаточно мало.

Таким образом, для диффузионного потока получаем выражение:

или, умножив обе части этого равенства на массу молекулы имеем:

Сравнивая его с уравнениями (40.2) и (40,3) закона Фика

находим интересующее нас выражение для коэффициента диффузии:

Из этого выражения видно, что коэффициент диффузии обратно пропорционален давлению газа (потому что и прямо пропорционален квадратному корню из температуры

При выводе формулы (42.1) не принималась во внимание диффузия второго компонента, крторая, разумеется, тоже происходит. И она не может не влиять на диффузию рассматриваемого компонента смеси.

Так, например, в смеси водорода и углекислого газа водород должен диффундировать значительно быстрее, чем углекислый газ, потому что при данной температуре средняя скорость тепловых движений молекул водорода почти в пять раз больше и, кроме того, длина свободного пробега молекул водорода тоже больше. Но это

значит, что объем водорода, переносимого в одном направлении, больше объема углекислого газа, переносимого в противоположном направлении. В таком случае в газе неизбежно возникает разность давлений, а значит, и поток газа в целом. Между тем мы определили диффузию как процесс, при котором давление газовой смеси во всех точках остается постоянным и газ, как целое, покоится. На самом же деле в процессе взаимной диффузии двух различных газов, одного в другой, превышение диффузионного потока одного из них над потоком другого уравновешивается течением всего газа по направлению к той области, где первоначально находились более быстро диффундирующие молекулы.

Этого обстоятельства мы, однако, не принимали во внимание при выводе формулы (42.1) для коэффициента диффузии, и эта формула справедлива в сущности только для диффузии молекул газа в среде того же газа. Такой процесс называется самодиффузией, а формула (42.1) выражает, следовательно, коэффициент самодиффузии.

С таким явлением мы имеем дело, например, когда газовая смесь состоит из двух различных изотопов одного и того же вещества, лишь незначительно отличающихся друг от друга своей массой, но не отличающихся никакими другими свойствами. Если один из изотопов радиоактивен, то такую самодиффузию легко наблюдать, так как за проникновением радиоактивных частиц можно следить по их излучению.

1
Оглавление
email@scask.ru