§ 93. Третье начало термодинамики
Многочисленные опыты показывают, что с понижением температуры во всякой системе наблюдается тенденции ко все большей степени упорядоченности. На это указывают исследования строения тел, магнитные их свойства и многие другие данные. Можно полагать, что упорядоченное состояние отвечает меньшей энергии частиц, образующих тело, но что установлению порядка при высоких температурах препятствует тепловое движение. Если бы можно было охладить тело до абсолютного нуля, когда тепловые движения не могут мешать установлению порядка, то в системе установился бы максимальный мыслимый порядок и этому состоянию соответствовала бы минимальная энтропия.
Возникает, однако, вопрос: как бы вело себя тело при абсолютном нуле, если бы над ним совершалась внешняя работа (например, было бы приложено давление)? Может ли изменяться энтропия тела, находящегося при абсолютном нуле?
На основании многих опытов, проводившихся при низких температурах, можно было сделать важный вывод, который формулируется в следующем виде (Нернст, 1906 г.): при абсолютном нуле температуры любые изменения состояния происходят без изменения энтропии.
Это утверждение обычно называют теоремой Нернста. Иногда его возводят в ранг третьего начала термодинамики.
Как мы видели выше, вероятностная трактовка понятия энтропии позволяет сделать вывод о том, что энтропия при абсолютном нуле температуры равна нулю, что, конечно, не противоречит формулировке Нернста.
Из того факта, что при
и энтропия равна нулю, следует, что абсолютный нуль принципиально недостижим, так как нетрудно показать, что если бы существовало тело с температурой, равной нулю, то можно было бы построить вечный двигатель второго рода, что противоречит второму началу термодинамики. Иногда третье начало термодинамики и формулируют как принцип недостижимости абсолютного нуля:
Из третьего начала термодинамики (так будем его называть) следуют важные выводы о поведении вещества при очень низких температурах. Так, например, из него вытекает, что с понижением температуры теплоемкость тел должна стремиться к нулю вместе с температурой, а при абсолютном нуле она должна быть равна нулю. Опыт хорошо подтверждает эту тенденцию. Можно показать, что должны стремиться к нулю (а при
стать равными нулю) коэффициент теплового расширения тел, коэффициент сжимаемости и т. д. Все это, впрочем, относится к системам, находящимся в равновесном состоянии. У тел, не находящихся в равновесном состоянии, энтропия при абсолютном нуле может и отличаться от нуля.