Главная > Основы теории электричества
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

§ 10. Градиент электростатического потенциала. Линии сил

1. Из формул (8.1)

следует, что

где означает производную по направлению вектора ds (см. приложение, § 2). По определению понятия градиента эта пространственная производная скаляра совпадает со слагающей его градиента по направлению уравнение (4]:

Таким образом,

Так как это равенство проекций векторов должно иметь место при любом выборе направления то и векторы эти должны быть равны друг другу:

Таким образом, напряженность электростатического поля равна градиенту электростатического потенциала взятому с обратным знаком.

Так как градиент потенциала направлен в сторону его возрастания и является мерой быстроты этого возрастания, то можно сказать, что напряженность электрического поля есть мера быстроты спадания потенциала, или, просто, что она равна спаду потенциала. Направление напряженности поля совпадает с направлением ортогональных траекторий эквипотенциальных поверхностей (см. приложение, § 2). Поэтому эти ортогональные траектории (линии градиента) совпадают с линиями электрических сил, или силовыми линиями.

2. Электрической силовой линией называется линия, касательные к которой в каждой ее точке совпадают по направлению с вектором напряженности электрического поля в той же точке (т. е. с направлением электрической силы, действующей на единичный положительный заряд). Очевидно, что через каждую точку поля, в которой можно провести одну и только одну силовую линию. В каждой такой точке вектор имеет вполне определенное направление. Отложив из произвольно малый отрезок в направлении мы придем в точку в которой вектор может иметь иное направление, чем в Отложив из произвольно малый отрезок в соответствующем направлении, мы придем в новую точку в которой можем опять повторить ту же операцию, и т. д. Полученная таким образом ломаная линия в пределе, при беспредельном уменьшении составляющих ее отрезков, совпадает с искомой силовой линией.

Чтобы получить аналитическое уравнение силовых линий, достаточно учесть, что элемент длины силовой линии параллелен напряженности поля т. е. что слагающие его по осям координат пропорциональны слагающим вектора Е:

Уравнения (10.3) эквивалентны системе двух обыкновенных дифференциальных уравнений, например интегралы которых имеют вид: где постоянные интегрирования. Совокупность этих последних уравнений и представляет собою уравнение силовой линии. Произвол в выборе постоянных соответствует возможности произвольно выбрать координаты той точки поля, через которую мы желаем провести данную силовую линию.

Физики XIX в. долгое время стремились объяснить электромагнитные явления деформациями и вихревыми движениями особой всепроникающей гипотетической среды — эфира; они полагали, что силовые линии совпадают с осями деформации (или осями кручения), испытываемой эфиром в электрическом поле. Однако к началу XX в. выяснилась полная несостоятельность механистической теории эфира, и в настоящее время, пользуясь понятием «силовых линий», нужно помнить, что понятие это имеет условно-вспомогательное значение и что силовые линии служат лишь для графического изображения направления электрического вектора.

3. Впрочем, подобно тому как при надлежащем способе черчения эквипотенциальных поверхностей густота их расположения может служить мерой градиента потенциала, т. е. мерой напряженности поля, подобно этому и силовыми линиями можно воспользоваться для той же цели.

Нанести на чертеж все силовые линии, проходящие через каждую точку поля и заполняющие собой все занимаемое полем пространство, конечно, невозможно. Обыкновенно силовые линии чертятся с таким расчетом, чтобы в любом участке поля число линий, пересекающих перпендикулярную к ним площадку единичной поверхности, было по возможности пропорционально

напряженности поля на этой площадке. В таком случае густота расположения силовых линий может служить мерой напряженности поля. При этом число линий, пересекающих произвольный элемент поверхности будет, очевидно, пропорционально произведению напряженности и проекции элемента на плоскость, перпендикулярную к Это произведение равно потоку вектора через элемент Поэтому вместо термина «поток вектора через данную поверхность» употребляют иногда выражение «число силовых линий, пересекающих данную поверхность». Это число линий считается положительным или отрицательным в зависимости от того, пересекают ли силовые линии данную поверхность в направлении положительной (внешней) или отрицательной (внутренней) нормали к ней.

Отметим, что при указанном способе черчения силовых линий общее число этих линий, пересекающих любую замкнутую поверхность должно быть пропорциональным алгебраической сумме зарядов, расположенных внутри ибо, согласно теореме Гаусса (3.6), сумма этих зарядов пропорциональна потоку вектора через При этом, конечно, определяя число линий, пересекающих мы каждую из них должны брать с надлежащим знаком или

В частности, число силовых линий, пересекающих любую, не содержащую зарядов, замкнутую поверхность, равно нулю. Иными словами, число (положительное) линий, выходящих из ограниченного поверхностью объема, равно (отрицательному) числу линий, входящих в него. Отсюда следует, что в свободных от зарядов участках поля силовые линии не могут ни начинаться, ни оканчиваться. С другой стороны, линии эти не могут

также быть замкнутыми. В противном случае, линейный интеграл по каждой из замкнутых линий сил был бы отличен от нуля (ибо элементы линий сил параллельны стало быть, подынтегральное выражение существенно положительно), что противоречит уравнению (7.3). Стало быть, в электростатическом поле линии сил либо начинаются и оканчиваются на электрических зарядах, либо одним своим концом уходят в бесконечность.

Таким образом, для получения правильной картины поля достаточно, очевидно, от каждого элемента заряда провести число линий, пропорциональное величине этого заряда.

Для незамкнутых линий, впрочем, существует, помимо перечисленных, еще третья возможность: они могут при безграничном продолжении, не пересекаясь и не замыкаясь, всюду плотно заполнять некоторый ограниченный участок пространства. С такого рода магнитными силовыми линиями мы познакомимся в гл. IV. Однако для силовых линий электростатического поля эта возможность исключена, ибо линия, заполняющая некоторый участок пространства, должна при достаточном продолжении как угодно близко подходить к ранее пройденным ею точкам. Если суть две такие бесконечно близкие точки на подобной силовой линии то интеграл по этой линии будет существенно положителен и будет обладать конечной величиной. Вместе с тем, если только вектор конечен, этот интеграл должен отличаться лишь на бесконечно малую величину от интеграла по замкнутому контуру, образованному отрезком силовой линии и бесконечно малым отрезком прямой, соединяющей Но последний интеграл, согласно (7.3), равен нулю, т. е. отличается на конечную величину от Этим противоречием и доказывается невозможность существования силовых линий указанного типа.

Задача 9. Показать, исходя из (8.10), что напряженность поля диполя момента линии сил которого изображены на

рис. 15, равна

и что в сферической системе координат а с центром в диполе и полярной осью, параллельной слагающие вектора равны

Таким образом, угол между силовой линией и радиусом-вектором определяется соотношением

На одинаковых расстояниях от диполя поле вдоль его оси или вдвое сильнее, чем в экваториальной плоскости

Рис. 15

Categories

1
Оглавление
email@scask.ru