Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 33. Сведение объемных сил к натяжениям1. Как уже упоминалось в § 16, механистическая теория электромагнитного поля прошлого века искала причины электрических явлений в упругих деформациях гипотетической среды — эфира. Характерной особенностью сил упругости, как, впрочем, и вообще сил близкодействия, является возможность сведения их к натяжениям, возникающим в деформированных средах, т. е. возможность сведения сил, действующих на произвольный участок среды, к силам натяжения, испытываемым поверхностью этого участка (в частности, давление есть отрицательное натяжение). Соответственно этому перед механистической теорией поля стояла задача сведения пондеромоторных сил поля к упругим натяжениям среды. Свести эти силы к натяжениям, как мы покажем, действительно, оказывается возможным. Правда, это обстоятельство ни в коей мере не спасает механистической теории поля, оказавшейся в целом несостоятельной; однако при рассмотрении многих вопросов замена пондеромоторных сил эквивалентными им натяжениями оказывается весьма целесообразной. В этом параграфе мы рассмотрим вопрос о сведении объемных сил к натяжениям в общей форме с тем, чтобы в следующем параграфе применить полученные результаты к интересующему нас случаю электрического поля. 2. Рассмотрим некоторый объем среды V, ограниченный поверхностью
С другой стороны, если объемные силы вообще могут быть сведены к натяжениям, то той же величине должна равняться и совокупность натяжений, действующих извне на замкнутую поверхность Сила натяжения, испытываемая каким-либо элементом Обозначим через
где
мы можем найти соотношение между плотностью объемных сил 3. Выберем какую-либо произвольную систему декартовых координат и обозначим соответственно через
Таким образом, например, Легко показать (см. любой учебник теории упругости), что сила натяжения имеет направление
так что слагающая этой силы, например, по оси х равна
Таким образом, девять величин,
4. Чтобы от интегрального соотношения (33.3) между натяжениями и объемными силами перейти к соотношениям дифференциальным, мы должны, очевидно, прежде всего преобразовать поверхностный интеграл справа в объемный (или наоборот). Воспользовавшись формулами (33.2) и (33.5), мы можем следующим образом выразить слагающую равнодействующей
Воспользуемся теперь теоремой Гаусса (17, которая в развернутой форме гласит:
Так как эта теорема справедлива для любых непрерывных функций точки
Внося это в (33.3) и приравнивая ввиду произвольности объема V подынтегральные выражения, получаем окончательно
и аналогично:
Эти формулы и устанавливают искомые дифференциальные соотношения между плотностью объемных сил 5. Из (33.7) следует, что плотность объемных сил определяется не абсолютной величиной натяжений, а характером изменения натяжений в пространстве (при перемещениях точки наблюдения). В частности, 6. Для эквивалентности объемных сил и натяжений необходимо, чтобы при замене объемных сил эквивалентными натяжениями оставались неизменными не только равнодействующая сил, приложенных к произвольному объему, но и момент этих сил. Это обстоятельство накладывает дополнительное ограничение на компоненты тензора натяжений. Момент
где
Подынтегральное выражение справа может быть представлено следующим образом:
Так как первые три члена этого выражения по своему виду совпадают с выражением дивергенции вектора с компонентами
то объемный интеграл можно преобразовать с помощью теоремы Гаусса (17*):
причем на основании (33.5)
Окончательно получаем
Поверхностный интеграл справа равен моменту сил натяжения
Повторив те же рассуждения для слагающих
Тензоры, компоненты которых удовлетворяют соотношениям (33.10), называются симметричными. Таким образом, необходимые и достаточные условия того, чтобы система объемных сил и система натяжений были эквивалентны друг другу как в отношении равнодействующей сил, приложенных к произвольному объему, так и в отношении момента этих сил, сводятся, во-первых, к соотношениям (33.7) и, во-вторых, к симметрии тензора натяжений. Если же тензор натяжений не симметричен, то система натяжений не может быть заменена эквивалентным распределением объемных сил. Это, впрочем, явствует уже из того, что если компоненты тензора к произвольному объему, будет при 7. Ранее мы пользовались некоторой произвольно выбранной системой координат и не касались вопроса о законе преобразования компонент тензора при преобразовании координат. Этот закон может быть найден из требования (вытекающего из самого определения понятия натяжения), чтобы слагающие Мы не будем останавливаться здесь на выводе этого закона преобразования; отметим только, что с помощью его можно убедиться в том, что как уравнение (33.7), так и условие (37.10) симметрии тензора сохраняют свой вид при любом преобразовании декартовых координат.
|
1 |
Оглавление
|