Главная > Основы теории электричества
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 102. Распространение волн в проводящей среде. Отражение света от металлической поверхности

1. В диэлектриках электромагнитные волны распространяются без затухания, в хороших же проводниках — металлах — электромагнитные волны затухают настолько быстро, что даже тонкие слои металлов оказываются непрозрачными для волн. Объясняется это, конечно, тем, что энергия волны переходит по мере ее распространения в джоулево тепло, выделяемое возбуждаемыми полем волны токами проводимости.

Покажем, прежде всего, что распространение волн в однородном проводнике не связано с возникновением в нем свободных электрических зарядов. Внося в уравнение непрерывности выражение (V) для плотности тока и предполагая, что сторонние электродвижущие силы в проводнике отсутствуют, получаем

Решение этого дифференциального уравнения есть

где произвольная постоянная.

Следовательно, если даже каким-либо образом внести в проводник свободные объемные заряды, то плотность этих зарядов спадет с течением времени по экспоненциальному закону до нуля; чем больше электропроводность тем быстрее произойдет это рассасывание зарядов. Электромагнитное поле вообще не может создать в проводнике объемных свободных зарядов, ибо если в момент то, согласно (102.1), оно останется равным нулю и во все последующее время.

2. Рассмотрим монохроматическую волну частоты в металле, т. е. положим

Внося эти выражения в уравнения Максвелла воспользовавшись уравнениями (V) и полагая, согласно (102.1), получаем после сокращения на

Эти уравнения отличаются от соответствующих уравнений в диэлектриках только тем, что в первом из них множитель заменяется множителем Иными словами, эти уравнения совпадут с уравнениями волны в диэлектрике, если в последних заменить на

Таким образом, в отношении распространения монохроматических волн проводник эквивалентен диэлектрику с комплексной диэлектрической проницаемостью Поэтому при рассмотрении волн в металле мы можем непосредственно воспользоваться результатами, полученными в § 100 и 101 для волн в диэлектриках, произведя в формулах этих параграфов замену на

Так, например, волновое (комплексное) число к определится в соответствии с (100.4) формулой

Целесообразно разложить к на действительную и мнимую части:

Мы условимся брать для положительные корни этих уравнений. В соответствии с (102.4) и (100.5) поле плоской монохроматической волны в проводнике, распространяющейся вдоль оси z, выражается формулами

Таким образом, комплексность волнового числа к соответствует наличию поглощения: амплитуда волны экспоненциально спадает по мере ее распространения. При мнимая часть волнового числа к обращается в нуль, и затухание волн прекращается.

В соответствии с (100.9) векторы волны в проводнике взаимно перпендикулярны и образуют с направлением распространения волны правовинтовую систему; однако векторы обладают в проводнике различными фазами, а не одинаковыми, как в диэлектрике. Действительно, заменив в формуле на получим

Так как множитель комплексен, то фаза вектора отлична от фазы Подробнее об этом см. в § 103.

3. В § 90, посвященном скин-эффекту, мы тоже изучали периодическое поле в проводнике с тем единственным отличием от нашего теперешнего рассмотрения, что в § 90 мы пренебрегали токами смещения в проводнике по сравнению с токами проводимости. Так как, согласно § 88, токи смещения в металлах малы по сравнению с токами проводимости вплоть до частот, соответствующих инфракрасной части спектра

то результаты настоящего параграфа должны при меньших частотах лишь незначительно отличаться от результатов § 90.

Действительно, разрешая уравнения (102.4) относительно получаем

Как указывалось в § 88, в металлах т. е. вплоть до поэтому даже в случае световых волн можно в (102.6) пренебречь единицей по сравнению с Таким образом, с достаточной степенью точности

что совпадает с выражением (90.5) для . Таким образом, (102.5) практически совпадает с ранее найденным выражением (90.6) для электрического вектора волны в металле.

Как отмечалось в § 90, глубина проникновения волны в металл определяется величиной

ибо амплитуда волны спадает на этой глубине в раз по сравнению с амплитудой на поверхности. Так как, согласно (100.7), длина волны, которую мы на этот раз для отличия от проводимости А обозначим через I, равна и так как то

Таким образом, на отрезке 5 откладывается только 1/6 часть длины волны, т. е. никакой пространственной периодичности поля волны в металле нет. В качестве иллюстрации приведем следующую табличку глубины проникновения в медь полей различной частоты в этой табличке означает длину соответствующей волны в вакууме:

4. Явления отражения света от металлической поверхности гораздо сложнее, чем отражение на границе диэлектриков; так, например, линейно поляризованная волна при отражении от металла становится эллиптически поляризованной (если угол падения не равен 90°). Мы ограничимся рассмотрением простейшего

случая нормального падения плоской монохроматической волны из вакуума на поверхность металла.

При решении этой задачи мы можем воспользоваться результатами § 101. Полагая, как и в § 101, что проницаемость среды равна единице и, кроме того, что металл граничит с вакуумом, мы должны будем в формулах § 101 заменить на 1, а на В частности, показатель преломления металла относительно вакуума, согласно (101.9), окажется равным

т. е. будет иметь комплексное значение. Амплитуды электрического вектора отраженной и преломленной волн при нормальном падении волны на металл определяется формулой (101.10):

Полагая в формулах § 101 и получим

Действительная часть этих комплексных выражений равна

где углы должны быть определены из соотношений

причем, например, означает модуль комплексной величины Таким образом, ввиду комплексности фазы отраженной и преломленной волн не будут, как это имеет место в диэлектриках, совпадать на границе раздела с фазой падающей волны, а будут сдвинуты относительно нее соответственно на углы

В соответствии с (101.11) и (101.13) средние за период плотности потока энергии в падающей и отраженной волне и коэффициент отражения будут равны

Так как А для металлов порядка то вплоть до частот видимого света; стало быть, согласно (102.2) и (102.9), модуль также гораздо больше единицы.

Поэтому коэффициент отражения металлических поверхностей близок к единице. Так, например, даже для желтой линии натрия равно 0,95 для и т. д.

1
Оглавление
email@scask.ru