Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава 22. РЕДУКЦИЯВ этой главе мы рассмотрим метод сведения аффинной по управлению системы к нелинейной системе на многообразии меньшей размерности. 22.1. РедукцияРассмотрим аффинную по управлению систему
с попарно коммутирующими векторными полями при управлениях
Поток системы можно разложить по формуле вариаций:
Здесь мы считаем
где
Действительно, первое включение следует непосредственно из разложения (22.2). Чтобы доказать второе разложение в (22.4), заметим, что отображение
непрерывно в топологии
непрерывно в топологии
имеет всюду плотный образ в Частичная система (22.3) инвариантна относительно полей
Поэтому цепочка (22.4) и равенство (22.5) означают, что исходную систему (22.1) можно рассматривать как композицию частичной системы (22.3) с потоком полей любое множество достижимости исходной системы за время Пусть
Легко видеть, что
есть экстремаль системы (22.3), соответствующая управлению
более того,
(Мы используем здесь термин «экстремаль» как синоним критической точки отображения в конец, т. е. мы требуем, чтобы экстремальное управление было критическим, но не обязательно минимизирующим, для зависящего от управления гамильтониана ПМП.) Обратно: если — экстремаль (22.3) с липшицевым управлением
есть экстремаль исходной системы (22.1) с управлением
Более того, усиленное обобщенное условие Лежандра для экстремали Упражнение 22.1. Проверьте, что экстремали Так как система (22.3) инвариантна относительно полей эту систему можно рассматривать на факторе многообразия
Предположим, что все орбиты
Переход от исходной аффинной по управлению системы (22.1) к нелинейной по управлению редуцированной системе (22.7) уменьшает размерность пространства состояний и преобразует особые экстремали в регулярные. Пусть
Из приведенного выше анализа экстремалей следует, что когда ее проекция Можно также определить процедуру обратной редукции. Возьмем управляемую систему
ограничим ее на липшицевы управления
Упражнение 22.2. Докажите, что система (22.9) является редукцией системы (22.10).
|
1 |
Оглавление
|