Главная > Курс общей физики, Т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 119. Капиллярные явления

Существование краевого угла приводит к тому, что вблизи стенок сосуда наблюдается искривление поверхности жидкости. В узкой трубке (капилляре) или в узком зазоре между двумя стенками искривленной оказывается вся поверхность. Если жидкость смачивает стенки, поверхность имеет вогнутую форму, если не смачивает — выпуклую (рис. 119.1). Такого рода изогнутые поверхности жидкости называются менисками.

Если капилляр погрузить одним концом в жидкость, налитую в широкий сосуд, то под искривленной поверхностью в капилляре давление будет отличаться от давления под плоской поверхностью в широком сосуде на величину определяемую формулой (117.4).

Рис. 119.1.

В результате при смачивании капилляра уровень жидкости в нем будет выше, чем в сосуде, при несмачивании — ниже.

Изменение высоты уровня жидкости в узких трубках или зазорах получило название капиллярности. В широком смысле под капиллярными явлениями понимают все явления, обусловленные существованием поверхностного натяжения. В частности, обусловленное поверхностным натяжением давление (117.4) называют, как уже отмечалось, капиллярным давлением.

Между жидкостью в капилляре и широком сосуде устанавливается такая разность уровней h, чтобы гидростатическое давление уравновешивало капиллярное давление

(119.1)

В этой формуле а — поверхностное натяжение на границе жидкость — газ, R — радиус кривизны мениска. Радиус кривизны мениска R можно выразить через краевой угол и радиус капилляра . В самом деле, из рис. 119.1 видно, что Подставив это значение в (119.1) и разрешив получившееся уравнение относительно h, приходим к формуле

(119.2)

В соответствии с тем, что смачивающая жидкость поднимается по капилляру, а несмачивающая — опускается, формула (119.2) дает в случае положительные случае отрицательные

При выводе выражения (119.2) мы предполагали, что форма мениска является сферической. Формулу для h можно получить также на основании энергетических соображений, причем не возникает необходимости делать какие-либо специальные предположения о форме мениска. Равновесное положение мениска будет соответствовать минимуму энергии Е системы жидкость — капилляр. Эта энергия слагается из поверхностной энергии на границах жидкость — стенка, жидкость — газ и стенка — газ, а также из потенциальной энергии жидкости в поле земного тяготения.

Найдем приращение энергии , соответствующее приращению высоты поднятия жидкости в капилляре При возрастании высоты на поверхность соприкосновения жидкости со стенкой капилляра увеличивается на вследствие чего энергия получает приращение, равное Одновременно уменьшается поверхность соприкосновения стенки с газом, что сопровождается приращением энергии, равным Потенциальная энергия в поле земного тяготения получает приращение, равное силе тяжести, действующей на заштрихованный объем жидкости (рис. 119.2), умноженной на h, т. е. равное

Рис. 119.2.

Изменением уровня жидкости в широком сосуде можно пренебречь. Таким образом,

Отсюда следует, что

Приравняв эту производную нулю, получим условие равновесия, из которого вытекает, что

(119.3)

В соответствии с формулой Произведя в (119.3) такую замену и обозначив просто , получим формулу (119.2).

1
Оглавление
email@scask.ru