Главная > Курс общей физики, Т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 83. Первое начало термодинамики

Внутренняя энергия может изменяться за счет в основном двух различных процессов: совершения над телом работы А и сообщения ему количества тепла Q. Совершение работы сопровождается перемещением внешних тел, воздействующих на систему. Так, например, при вдвигании поршня, закрывающего сосуд с газом, поршень, перемещаясь, совершает над газом работу Л. По третьему закону. Ньютона газ при этом совершает над поршнем работу

Сообщение газу тепла не связано с перемещением внешних тел и, следовательно, не связано с совершением над газом макроскопической (т. е. относящейся ко всей совокупности молекул, из которых состоит тело) работы. В этом случае изменение внутренней энергии обусловлено тем, что отдельные молекулы более нагретого тела совершают работу над отдельными молекулами тела, нагретого меньше. Передача энергии происходит при этом также через излучение. Совокупность микроскопических (т. е. захватывающих не все тело, а отдельные его молекулы) процессов, приводящих к передаче энергии от тела к телу, носит название теплопередачи.

Подобно тому как количество энергии, переданное одним телом другому, определяется работой А, совершаемой друг над другом телами, количество энергии, переданное от тела к телу путем теплопередачи, определяется количеством тепла Q, отданного одним телом другому. Таким образом, приращение внутренней энергии системы должно быть равно сумме совершенной над системой работы А и количества сообщенного системе тепла

Здесь — начальное и конечное значения внутренней энергии системы. Обычно вместо работы А, совершаемой внешними телами над системой, рассматривают работу А (равную —А), совершаемую системой над внешними телами. Подставив —А вместо А и разрешив уравнение (83.1) относительно Q, получим:

Уравнение (83.2) выражает закон сохранения энергии и представляет собой содержание первого закона (начала) термодинамики. Словами его можно выразить следующим образом: количество тепла, сообщенное системе, идет на приращение внутренней энергии системы и на совершение системой работы над внешними телами.

Сказанное отнюдь не означает, что всегда при сообщении тепла внутренняя энергия системы возрастает. Может случиться, что, несмотря на сообщение системе тепла, ее энергия не растет, а убывает . В этом случае согласно (83.2) , т. е. система совершает работу как за счет получаемого тепла Q, так и за счет запаса внутренней энергии, убыль которой равна . Нужно также иметь в виду, что величины Q и А в (83.2) являются алгебраическими означает, что система в действительности не получает тепло, а отдает).

Из (83.2) следует, что количество тепла Q можно измерять в тех же единицах, что и работу или энергию. В СИ единицей количества тепла служит джоуль.

Для измерения количества тепла применяется также особая единица, называемая калорией. Одна калория равна количеству тепла, необходимому для нагревания 1 г воды от 19,5 до 20,5 °С. Тысяча калорий называется большой калорией или килокалорией.

Опытным путем установлено, что одна калория эквивалентна 4,18 Дж. Следовательно, один джоуль эквивалентен 0,24 кал. Величина называется механическим эквивалентом тепла.

Если величины, входящие в (83.2), выражены в разных единицах, то некоторые из этих величии нужно умножить на соответствующий эквивалент. Так, например, выражая Q в калориях, a U и А в джоулях, соотношение (83.2) нужно записать в виде

В дальнейшем мы будем всегда предполагать, что Q, А и U выражены в одинаковых единицах, и писать уравнение первого начала термодинамики в виде (83.2).

При вычислении совершенной системой работы или полученного системой тепла обычно приходится разбивать рассматриваемый процесс на ряд элементарных процессов, каждый из которых соответствует весьма малому (в пределе — бесконечно малому) изменению параметров системы. Уравнение (83.2) для элементарного процесса имеет вид

где — элементарное количество тепла, — элементарная работа и — приращение внутренней энергии системы в ходе данного элементарного процесса.

Весьма важно иметь в виду, что и нельзя рассматривать как приращения величин Q и А.

Соответствующее элементарному процессу А какой-либо величины можно рассматривать как приращение этой величины только в том случае, если соответствующая переходу из одного состояния в другое, не зависит от пути, по которому совершается переход, т. е. если величина f является функцией состояния. В отношении функции состояния можно говорить о ее «запасе» в каждом из состояний. Например, можно говорить о запасе внутренней энергии, которым обладает система в различных состояниях.

Как мы увидим в дальнейшем, величина совершенной системой работы и количество полученного системой тепла зависят от пути перехода системы из одного состояния в другое. Следовательно, ни Q, ни А не являются функциями состояния, в силу чего нельзя говорить о запасе тепла или работы, которым обладает система в различных состояниях.

Таким образом, в символ А, стоящий при А и Q, вкладывается иной смысл, чем в символ А, стоящий при U. Чтобы подчеркнуть это обстоятельство, в первом случае А снабжено штрихом. Символ означает приращение внутренней энергии, символы и означают не приращение, а элементарное количество теплоты и работы.

Чтобы произвести вычисления, в (83.3) переходят к дифференциалам. Тогда уравнение первого начала принимает следующий вид:

Интегрирование (83.4) по всему процессу приводит к выражению

тождественному, с уравнением (83.2).

Еще раз подчеркнем, что, например, результат интегрирования нельзя записать в виде

Такая запись означала бы, что совершенная системой работа равна разности значений (т. е. запасов) работы во втором и первом состояниях,

1
Оглавление
email@scask.ru