Главная > Курс общей физики, Т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 68. Релятивистское выражение для энергии

Второй закон Ньютона гласит, что производная импульса частицы (материальной точки) по времени равна результирующей силе, действующей на частицу (см. формулу (9.1)). Уравнение второго закона оказывается инвариантным относительно преобразований Лоренца, если под импульсом подразумевать величину (67.5). Следовательно, релятивистское выражение Второго закона Ньютона имеет вид

Следует иметь в виду, что соотношение в релятивистском случае неприменимо, причем ускорение w и сила F, вообще говоря, оказываются неколлинеарными.

Заметим, что импульс, ни сила не являются инвариантными величинами. Формулы преобразования компонент импульса при переходе от одной инерциальной системы отсчета к другой будут получены в следующем параграфе. Формулы преобразования компонент силы мы дадим без. вывода:

( скорость частицы в системе К). Если в системе К действующая на частицу сила F перпендикулярна к скорости частицы V, скалярное произведение FV равно нулю и первая из формул (68.2) упрощается следующим образом:

Чтобы найти релятивистское выражение для энергии, поступим так же, как мы поступили в § 19. Умножим уравнение (68.1) на перемещение частицы . В результате получим

Правая часть этого соотношения дает работу совершаемую над частицей за время . В § 19 было показано, что работа результирующей всех сил идет на приращение кинетической энергии частицы (см. формулу ). Следовательно, левая часть соотношения должна быть истолкована как приращение кинетической энергий Т частицы за время . Таким образом,

Преобразуем полученное выражение, приняв во внимание, что (см. (2.54)):

Интегрирование полученного соотношения дает

(68.4)

По смыслу кинетической энергии она должна обращаться в нуль при Отсюда для константы получается значение, равное Следовательно, релятивистское выражение для кинетической энергии частицы имеет вид

В случае малых скоростей формулу (68.5) можно преобразовать следующим образом:

Мы пришли к ньютоновскому выражению для кинетической энергии частицы. Этого и следовало ожидать, поскольку при скоростях, много меньших скорости света, все формулы релятивистской механики должны переходить в соответствующие формулы ньютоновской механики.

Рассмотрим свободную частицу (т. е. частицу, не подверженную действию внешних сил), движущуюся со скоростью v. Мы выяснили, что эта частица обладает кинетической энергией, определяемой формулой (68.5). Однако имеются основания (см. ниже) приписать свободной частице, кроме кинетической энергии (68.5), дополнительную энергию, равную

(68.6)

Таким образом, полная энергия свободной частицы определяется выражением . Приняв во внимание (68.5), получим, что

При выражение (68.7) переходит в (68.6). Поэтому называют энергией покоя. Эта энергия представляет собой внутреннюю энергию частицы, не связанную с движением частицы как целого.

Формулы (68.6) и (68.7) справедливы не только для элементарной частицы, но и для сложного тела, состоящего из многих частиц. Энергия такого тела содержит в себе, помимо энергий покоя входящих в его состав частиц также кинетическую энергию частиц (обусловленную их движением относительно центра масс тела) энергию их взаимодействия друг с другом. В энергию покоя, как и в полную энергию (68.7), не входит потенциальная энергия тела во внешнем силовом поле.

Исключив из уравнений (67.5) и (68.7) скорость v (уравнение. (67.5) нужно взять в скалярном виде), получим выражение полной энергии частицы через импульс р:

В случае, когда эту формулу можно представить в виде

Полученное выражение отличается от ньютоновского выражения для кинетической энергии слагаемым

Заметим, что из сопоставления выражений (67.5): и (68.7) вытекает формула

(68-10)

Поясним, почему свободной частице следует приписывать энергию (68.7), а не только кинетическую энергию (68.5). Энергия по своему смыслу должна быть сохраняющейся величиной. Соответствующее рассмотрение показывает, что при столкновениях частиц сохраняется сумма (по частицам) выражений вида (68.7), в то время как сумма выражений (68.5) оказывается несохраняющейся. Невозможно удовлетворить требованию сохранения энергии во всех инерциальных системах отсчета, если не учитывать энергию покоя (68.6) в составе полной энергии.

Кроме того, из выражения (68.7) для энергии и выражения (67.5) для импульса удается образовать инвариант, т. е. величину, не изменяющуюся при преобразованиях Лоренца. Действительно, из формулы (68.8) вытекает, что

(68.11)

(напомним, что масса m и скорость с являются инвариантными величинами). Эксперименты над быстрыми частицами подтверждают инвариантность величины (68.11)

Если под Е в (68.11) понимать кинетическую энергию (68.5), выражение (68.11) оказывается не инвариантным.

Получим еще одно выражение для релятивистской энергии. Из формулы (64.3) следует, что

где промежуток времени между двумя происходящими с частицей событиями, отсчитанный по часам той системы отсчета, относительно которой частица движется со скоростью — тот же промежуток времени, отсчитанный по часам, движущимся вместе с частицей (промежуток собственного времени). Подставив (68.12) в формулу (68.7), получим выражение

(68.13)

Этой формулой мы воспользуемся в следующем параграфе.

1
Оглавление
email@scask.ru