Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 75. Торможение излучениемВ § 65 было показано, что разложение потенциалов поля системы зарядов в ряд по степеням В разложении скалярного потенциала
член третьего порядка по 1/с равен
По тем же причинам, что и при выводе (65,3), в разложении векторного потенциала мы должны взять только член второго порядка по 1/с, т. е.
Произведем преобразование потенциалов:
выбрав функцию f таким образом, чтобы скалярный потенциал
Тогда новый векторный потенциал будет равен
Переходя здесь от интегралов к суммам по отдельным зарядам, для первого слагаемого в правой части получим выражение —
Соответствующее этому потенциалу магнитное поле равно нулю
где d — дипольный момент системы. Таким образом, члены третьего порядка в разложении поля приводят к появлению дополнительных действующих на заряды сил, не содержащихся в функции Лагранжа (65,7); эти силы зависят от производных по времени от ускорения зарядов. Рассмотрим систему зарядов, совершающих стационарное движение и вычислим среднюю работу, производимую полем (75,4) за единицу времени. На каждый заряд
В единицу времени эта сила производит работу, равную
При усреднении по времени первый член исчезает, так что средняя работа оказывается равной
Но стоящее справа выражение есть не что иное, как (взятое с обратным знаком) среднее излучение энергии системой за единицу времени (см. (67,8)). Таким образом, возникающие в третьем приближении силы (75,5) описывают обратное действие излучения на заряды. Эти силы носят название торможения излучением или лоренцевых сил трения. Одновременно с потерей энергии в излучающей системе зарядов происходит также и потеря момента импульса. Уменьшение момента импульса в единицу времени,
Нас интересует среднее по времени значение потери момента импульса при стационарном движении, подобно тому как выше нас интересовала средняя потеря энергии. Написав
и замечая, что полная производная по времени (первый член) при усреднении исчезает, найдем окончательно следующее выражение для средней потери момента импульса излучающей системой:
Торможение излучением имеет место и при наличии одного движущегося во внешнем поле заряда. Оно равно
Для одной частицы можно всегда выбрать такую систему отсчета, в которой она в данный момент времени покоится. Если вычислять в такой системе дальнейшие члены разложения создаваемого зарядом поля, то легко убедиться в том, что при стремлении к нулю радиус-вектора R от заряда к точке наблюдения все эти члены обращаются в нуль. Таким образом, в случае одного заряда формула (75,8) является точным выражением для обратного действия излучения в той системе отсчета, в которой заряд покоится. Надо, однако, иметь в виду, что описание действия заряда «самого на себя» с помощью силы торможения вообще не является вполне удовлетворительным и содержит в себе противоречия. Уравнение движения заряда в отсутствие внешнего поля, на который действует только сила (75,8), имеет вид
Это уравнение имеет, кроме тривиального решения Может возникнуть вопрос о том, каким образом электродинамика, удовлетворяющая закону сохранения энергии, может привести к абсурдному результату, в котором свободная частица неограниченно увеличивает свою энергию. Корни этой трудности находятся, в действительности, в упоминавшейся ранее (§ 37) бесконечной электромагнитной «собственной массе» элементарных частиц. Когда мы пишем в уравнениях движения конечную массу заряда, то мы этим, по существу, приписываем ему формально бесконечную же отрицательную «собственную массу» неэлектромагнитного происхождения, которая вместе с электромагнитной массой приводила бы к конечной массе частицы. Поскольку, однако, вычитание одной из другой двух бесконечностей не является вполне корректной математической операцией, то это и приводит к ряду дальнейших трудностей, в том числе и к указанной здесь. В системе координат, в которой скорость частицы мала, уравнение движения с учетом торможения излучением имеет вид
По изложенным соображениям, это уравнение применимо только постольку, поскольку сила торможения мала по сравнению с силой, действующей на заряд со стороны внешнего поля. Для выяснения физического смысла этого условия поступим следующим образом. В системе отсчета, в которой заряд в данный момент покоится, вторая производная от скорости по времени равна, при пренебрежении силой торможения:
Во втором члене подставляем (ограничиваясь той же точностью)
Соответственно этому сила торможения будет состоять из двух членов:
Если и есть частота движения, то Поэтому условие малости сил торможения по сравнению с действующей на заряд внешней силой
или, вводя длину волны
Таким образом, формула (75,8) для торможения излучением применима только в том случае, если длина падающей на заряд волны велика по сравнению с «радиусом» заряда Во-вторых, сравнивая второй член в силе торможения с силой
(или Напомним во избежание недоразумений, что длина волны в (75,11) и величина поля в (75,12) относятся к той системе отсчета, в которой частица в данный момент покоится. ЗадачаОпределить время, в течение которого два притягивающихся заряда, совершающих эллиптическое движение (со скоростью, малой в сравнении со скоростью света) и теряющие энергию вследствие излучения, «упадут» друг на друга. Решение. Предполагая относительную потерю энергии за один оборот малой, мы можем положить производную по времени от энергии равной средней интенсивности излучения (определенной в задаче 1 § 70):
где Потеря момента в единицу времени дается формулой (75,7); подставляя в нее выражение (70,1) для d и замечая, что
Это выражение усредняем по периоду движения. Учитывая медленность изменения М, в правой стороне равенства достаточно усреднить лишь
(знак среднего, как и в (1), опускаем). Разделив (1) на (2), получим дифференциальное уравнение
интегрируя которое, найдем:
Постоянная интегрирования выбрана таким образом, чтобы при «Падению» частиц друг на друга соответствует Заметим, что произведение
|
1 |
Оглавление
|