Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 135. Люминесценция. Законы фотолюминесценции и некоторые ее практические примененияСвечение вещества (т. е. испускание видимого света), обусловленное переходами атомов и молекул вещества с высших энергетических уровней на низшие, называется люминесценцией, или холодным свечением. Люминесценции должно предшествовать возбуждение атомов и молекул вещества. После устранения возбудителя люминесценция продолжается в течение некоторого промежутка времени, зависящего от природы люминесцирующего вещества и изменяющегося в широких пределах: от миллиардных долей секунды до многих часов и даже суток. По продолжительности «послесвечения» люминесценция подразделяется на флуоресценцию (кратковременное «послесвечение») и фосфоресценцию (длительное «послесвечение»). Впрочем, это подразделение весьма условно. Свечение, обусловленное тепловым движением атомов и молекул (т. е. тепловое излучение), не относится к люминесценции. К ней не относятся также отражение и рассеяние света и некоторые другие виды свечения тела, прекращающиеся одновременно с устранением причины, вызвавшей их. Чтобы отличить люминесценцию от этих видов свечения, ей можно дать следующее определение: люминесценция есть свечение вещества, являющееся избытком над тепловым излучением этого вещества при данной температуре и имеющее конечную длительность (т. е. не прекращающееся одновременно с устранением вызвавшей его причины). Вещества, обладающие ярко выраженной способностью люминесцировать, называются люминофорами. В зависимости от способа возбуждения люминесценции различают несколько ее видов. 1. Фотолюминесценция возбуждается видимым и ультрафиолетовым излучением. Примером фотолюминесценции может служить свечение часового циферблата и стрелок, окрашенных соответствующим люминофором. 2. Рентгенолюминесценция возбуждается рентгеновскими лучами; ее можно наблюдать, например, на экране рентгеновского аппарата. 3. Радиолюминесценция возбуждается радиоактивным излучением (см. § 139); наблюдается, например, на экране сцинтилляционных счетчиков (см. § 140). 4. Катодолюминесценция возбуждается электронным лучом; наблюдается на экранах осциллографа, телевизора, радиолокатора и других электроннолучевых приборов. В качестве люминофора, покрывающего экран, используются главным образом сульфиды и селениды цинка и кадмия. 5. Электролюминесценция возбуждается электрическим полем; имеет место, например, в газоразрядных трубках. 6. Хемилюминесценция возбуждается химическими процессами в веществе. Таковы, например, свечение белого фосфора, гниющей древесины, а также свечения некоторых споровых растений, насекомых, морских животных и бактерий. Таким образом, люминесценция является своеобразным генератором (квантовым генератором), непосредственно преобразующим энергию электромагнитных волн различной длины, а также механическую, электрическую и химическую энергию в энергию видимого света. Степень преобразования поглощаемой энергии
Спектр люминесценции зависит от природы люминесцирующего вещества и вида люминесценции. Из всех перечисленных видов люминесценции рассмотрим подробнее только фотолюминесценцию, имеющую большое практическое применение. Экспериментальное изучение спектров фотолюминесценции показало, что они, как правило, отличаются от спектров возбуждающего излучения. Спектр люминесценции и его максимум сдвинуты в сторону более длинных волн относительно спектра, использованного для возбуждения. Эту закономерность, называемую правилом Стокса, легко объяснить на основе квантовой теории. Энергия поглощаемого кванта Иногда может иметь место так называемая антистоксовская люминесценция, при которой Существенной особенностью жидких и твердых люминофоров является независимость их спектра люминесценции от длины волны возбуждающего света. Благодаря этому по спектру фотолюминесценции можно судить о природе вещества жидких и твердых люминофоров. Энергетический выход люминесценции может при некоторых условиях быть очень большим, достигающим 0,8; у жидких и твердых тел он зависит от длины волны возбуждающего света. Согласно закону Вавилова, энергетический выход люминесценции сначала растет пропорционально длине волны возбуждающего света На рис. 365 приведен график зависимости Как и правило Стокса, закон Вавилова объясняется квантовыми свойствами света. Действительно, представим себе наиболее благоприятный случай, когда каждый квант возбуждающего света энергетический выход люминесценции, очевидно, равен отношению этих квантов:
Но X не зависит от
Рис. 365
Рис. 366 Люминесценция находит широкое применение в осветительной технике: на ней, например, основана люминесцентная лампа. Люминесцентная лампа состоит из стеклянной трубки, у которой внутренняя поверхность стенок покрыта тонким слоем люминофора (рис. 366). В торцы трубки впаяны электроды. Трубка наполнена парами ртути и аргоном; парциальное давление паров ртути составляет около 1 Па, парциальное давление аргона — 400 Па. Люминесцентная лампа включается в электросеть последовательно с дросселем и стартером (служащим для предварительного разогрева электродов). Возникающий в лампе газовый разряд вызывает электролюминесценцию паров ртути. В спектре этой люминесценции наряду с видимым светом имеется ультрафиолетовое излучение (длиной волны Изменяя состав люминофора, можно изготовлять лампы Спектральный состав излучения ламп дневного света близок к рассеянному евету северной части небосвода; лампа холодно-белого света имеет спектр, подобный спектру прямой солнечной радиации. В связи с этим люминесцентные лампы успешно применяются для «досвечивания» сельскохозяйственных культур, выращиваемых на защищенном грунте. Распределение энергии Люминесцентные лампы экономичны (их световой коэффициент полезного действия в 10—20 раз больше, чем у ламп накаливания) и весьма долговечны (срок службы доходит до 10 000 часов). Другим важным применением люминесценции является люминесцентный анализ — метод определения состава вещества по спектру его фотолюминесценции, возбуждаемой ультрафиолетовыми лучами. Будучи очень чувствительным, люминесцентный анализ позволяет обнаружить малейшие изменения в химическом составе вещества и тем самым выявлять различие между объектами, кажущимися совершенно одинаковыми. Этим методом можно, например, выявлять самые начальные стадии загнивания пищевых продуктов (люминесцентный контроль свежести продуктов), обнаруживать следы нефти в пробах почвы, извлеченных из буровых скважин (люминесцентная разведка нефти), и т. п.
Рис. 367 С помощью фотолюминесценции можно обнаружить тончайшие трещины на поверхности деталей машин и других изделий (люминесцентная дефектоскопия). Для этого поверхность исследуемого изделия смазывают жидким люминофором. Через 15—20 мин поверхность обмывают и вытирают. Однако в трещинах поверхности люминофор остается. Свечение этого люминофора (при ультрафиолетовом облучении изделия) отчетливо обрисует конфигурацию трещин. Укажем, наконец, на использование фотолюминесценции для маскировочного освещения и декоративных целей (применение флуоресцирующих и фосфоресцирующих красок). При фотолюминесценции атомы люминесцирующего вещества излучают совершенно несогласованно (беспорядочно): их излучения разновременны, имеют различные частоты и разности фаз, распространяются по всевозможным направлениям. Поэтому яркость фотолюминесценции оказывается незначительной. Однако в последние годы удалось найти способ искусственно вызывать когерентное одинаково направленное излучение множества атомов, создающее узкий пучок монохроматического света, превосходящего по яркости обычную люминесценцию в миллионы раз. Прибор, в котором осуществляется такое излучение, назван оптическим квантовым генератором, или лазером. Название «лазер» образовано из первых букв английских слов: Light Amplification by Stimylated Emission of Radiation (усиление света посредством вынужденного излучения). В зависимости от применяемого рабочего вещества различают кристаллические, газовые и жидкостные лазеры. Чтобы лазер начал действовать, необходимо перевести большое число атомов его рабочего вещества в одинаковые возбужденные состояния, так называемые метастабильные состояния, в которых атом пребывает сравнительно долгое время (значительно превышающее Лазер дает световой пучок очень малой расходимости. Будучи, например, направлен на Луну, такой пучок создает на ее поверхности световое пятно диаметром всего лишь в Все это делает лазер исключительно перспективным прибором, уже сейчас широко используемым во многих областях науки и техники. Сварка микрообъектов, сверление и резка сверхтвердых материалов, ускорение хода химических реакций, передача световых сигналов на сверхдальние расстояния (космическая связь), глазная хирургия (разрушение опухолей на сетчатке) — таков далеко не полный перечень применений лазера. Отметим, что наряду с оптическими квантовыми генераторами созданы квантовые генераторы в диапазоне коротких радиоволн — мазеры
|
1 |
Оглавление
|