Главная > Курс физики (Грабовский Р.И.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 25. Уравнение Бернулли

Пусть по наклонной трубке тока (или реальной трубе) переменного сечения движется жидкость в направлении слева направо. Мысленно выделим область трубки, ограниченную сечениями в которых скорости течения равны соответственно и (рис. 37). Определим изменение полной энергии, происходящее в этой области за малый промежуток времени За это время масса жидкости, заключенная между сечениями втекает в рассматриваемую область, а масса, заключенная между сечениями выге кает из нее. Иных изменений в рассматриваемой области не происходит. Поэтому величина изменения полной энергии равна разности полных энергий вытекающей и втекающей масс.

Рис. 37

Учитывая, что полная энергия идеальной несжимаемой жидкости слагается из ее кинетической и потенциальной энергий, получим

где индексы 1 и 2 относятся соответственно к сечениям

Как мы уже видели (см. § 24), вытекающая и втекающая массы оказываются одинаковыми Вводя в формулу (2) выражения кинетической и потенциальной энергий, напишем

где ускорение силы тяжести.

В соответствии с законом сохранения энергии, найденная величина изменения энергии должна равняться работе внешних сил (давления) по перемещению массы

Определим эту работу. Внешняя сила давления совершает работу по перемещению втекающей массы на пути в то же время вытекающая масса совершает работу против внешней силы давления на пути Поэтому

а искомая работа

Учитывая, что

где и -давления на сечениях получим

Но

объем каждой из рассматриваемых масс (см. § 24). Поэтому

Объединяя формулы (3), (4) и (5), получим после перегруппировки слагаемых

Поделив обе части последнего равенства на и учитывая, что плотность жидкости, получим

Поскольку сечения выбраны произвольно, можно окончательно написать

Это соотношение, выведенное в 1738 г. Д. Бернулли, называется уравнением Бернулли. Первое слагаемое левой части этого уравнения представляет собой удельную кинетическую энергию жидкости; второе — удельную потенциальную энергию жидкости в поле силы тяжести; третье — удельную энергию жидкости, обусловленную силами давления (удельная энергия — энергия, приходящаяся на единицу объема жидкости).

Единицей измерения давления является паскаль (Па). Паскаль — давление, вызываемое силой равномерно распределенной на поверхности площадью

Следовательно, уравнение Бернулли выражает закон сохранения энергии (удельной) и может быть сформулировано так:

при установившемся движении идеальной несжимаемой жидкости сумма удельной энергии давления и кинетической и потенциальной удельных энергий остается постоянной на любом поперечном сечении потока.

Из приведенного преобразования единиц измерения давления в единицы измерения удельной энергии следует, что все члены левой части уравнения (6) можно еще рассматривать как величины давления. Величину называют статическим давлением, величину динамическим давлением, величину гидравлическим давлением. Следовательно, уравнению Бернулли можно дать еще такую формулировку:

в установившемся потоке идеальной несжимаемой жидкости полное давление, слагающееся из динамического, гидравлического и статического давлений, постоянно на любом поперечном сечении потока.

Для горизонтальной трубки тока (или реальной трубы) уравнение Бернулли принимает вид

(так как

Из уравнений Бернулли и неразрывности следует, что в местах сужения трубопровода скорость течения жидкости возрастает, а давление понижается.

В заключение остановимся на следующем важном положении. Уравнения (1) и (6) применимы не только к жидкостям, но и к газам в случаях, когда сжимаемостью и вязкостью газа можно пренебрегать. Оказывается, что это можно делать при небольших скоростях движения газа, когда в газовом потоке обычно не возникает больших градиентов скорости, а следовательно, и больших сил вязкости (см. § 50). Что касается сжимаемости газа, то, как показывают теория и опыт, ею можно пренебречь при скоростях движения газа, меньших скорости распространения звука в нем. Скорость звука в воздухе составляет около Поэтому воздух, движущийся со скоростью, не превышающей допустимо считать идеальной несжимаемой жидкостью и применять к нему уравнение неразрывности и уравнение Бернулли.

1
Оглавление
email@scask.ru