Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА 5. СОСТАВЛЕНИЕ ИСХОДНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ§ 5.1. Общий метод составления исходных уравненийСистемы автоматического регулирования в большинстве случаев являются сложными устройствами, динамика которых описывается совокупностью дифференциальных уравнений. Для получения этой совокупности необходимо составить дифференциальное уравнение для каждого элемента автоматической системы так, чтобы общее число уравнений было не меньше, чем число независимых обобщенных координат, определяющих состояние системы. При составлении дифференциального уравнения каждого элемента необходимо прежде всего выявить физический закон, определяющий его поведение. Таким законом может быть, например, закон сохранения вещества (объекты регулирования уровня, давления), закон сохранения энергии (объекты регулирования температуры), закон равновесия моментов (объекты регулирования скорости или угла поворота), закон равновесия электродвижущих сил (электрические цепи) и другие основные законы физики. Математическое выражение соответствующего физического закона и является исходным дифференциальным уравнением данного элемента автоматической системы. Например, для электродвигателя закон равновесия моментов на его валу может быть записан в следующем виде:
где После записи дифференциального уравнения необходимо определить факторы, от которых зависят переменные, входящие в это уравнение. Для приведенного выше примера необходимо установить, от каких величин зависят и какими выражениями определяются вращающий момент двигателя Дальнейшим шагом является линеаризация полученных уравнений в соответствии с главой 3, если линеаризация вообще является допустимой. Обычно линеаризация допустима, если отсутствуют разрывные, неоднозначные или резко изгибающиеся характеристики и уравнения справедливы в течение всего интервала времени регулирования. В результате линеаризации получается совокупность дифференциальных уравнений, описывающих движение рассматриваемой системы. Введя алгебраизированный оператор дифференцирования
где Совокупность (5.1) может быть решена относительно любой обобщенной координаты. Обычно она решается либо относительно отклонения регулируемой величины от заданного значения, т. е. ошибки Первый случай встречается чаще, так как исследование изменения ошибки, как правило, является более важным. В этом случае получается дифференциальное уравнение
Полином
где Полином
где Полином Равным образом в системах программного регулирования и в следящих системах равенство Из (5.2) вытекает, что ошибка системы автоматического регулирования может быть представлена в виде суммы двух составляющих. Первая составляющая определяется наличием задающего воздействия При решении системы дифференциальных уравнений относительно регулируемой величины Это уравнение может быть получено в результате подстановки выражения для ошибки
Степень этого полинома
Как уже говорилось выше, в системах автоматической стабилизации при При заданных функциях времени в правых частях дифференциальных уравнений (5.2) и (5.5) эти уравнения могут быть решены (проинтегрированы) относительно искомых функций времени, т. е. может быть найдено изменение ошибки регулирования во времени Уравнения (5.1) могут быть также представлены в форме Коши, т. е. в виде совокупности
Здесь Если в (5.6) ввести алгебраизированный оператор и обозначить
|
1 |
Оглавление
|