Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА 6. КРИТЕРИИ УСТОЙЧИВОСТИ§ 6.1. Понятие об устойчивости систем регулированияПонятие устойчивости системы регулирования связано со способностью возвращаться в состояние равновесия после исчезновения внешних сил, которые вывели ее из этого состояния. Наглядно устойчивость равновесия иллюстрируется рис. 6.1, а, на котором изображен шар, лежащий в некотором углублении. При всяком отклонении его от положения равновесия он будет стремиться возвратиться к нему точно (при отсутствии сил трения) или к некоторой конечной области, окружающей предшествующее положение равновесия (при наличии сил трения). Такое положение шара будет устойчивым. На рис. 6.1, б изображен другой случай, когда положение шара оказывается неустойчивым. Рис. 6.1, в соответствует случаю безразличного положения равновесия.
Рис. 6.1. Можно ввести понятия о невозмущенном состоянии равновесия, соответствующем точке Понятие устойчивости можно распространить и на случай движения некоторой системы. Пусть ее состояние определяется независимыми координатами Аналогично случаю равновесия положения заданное движение можно назвать невозмущенпым движением. Приложение внешних сил к рассматриваемой системе вызовет отклонение действительного движения от заданного: Заданное невозмущенное движение будет устойчивым, если в результате приложения внешних сил, которые затем снимаются, возмущенное движение по истечении некоторого времени войдет в заданную область: Рассмотрим вопрос устойчивости более подробно. Пусть система регулирования описывается нелинейными дифференциальными уравнениями в форме Коши
Если при Пусть установившиеся процессы в системе характеризуются координатами
где Начальные значения отклонений А. М. Ляпунов [82] дал следующее определение устойчивости. Невозмущенное движение
возмущенное движение (6.2) будет для времени
Здесь Геометрическая интерпретация этого условия заключается в следующем. В пространстве координат Если с течением времени изображающая точка стремится к началу координат, т. е.
то система асимптотически устойчива. Несколько другое изложение этой теоремы будет дано ниже в § 16.1. Перейдем теперь к вопросу устойчивости линейных, а точнее, линеаризованных систем регулирования. Рассмотрим дифференциальное уравнение движения линеаризованной системы автоматического регулирования, записанное для регулируемой величины нулю возмущающих воздействий:
Коэффициенты
величины, а оператор Дифференциальное уравнение движения системы регулирования можно записать и для возмущающего воздействия. В этом случае левая часть (6.5) останется без изменения, а правая часть будет иметь иной вид. В общем виде дифференциальное уравнение, определяющее изменение регулируемой величины, может быть записано так, что в правой его части будет находиться некоторая функция времени Характер переходных процессов в системе определяется видом левой части дифференциального уравнения (6.5). Поэтому для определения качественной картины переходных процессов является практически безразличным, записать ли исходное дифференциальное уравнение для управляющего или возмущающего воздействия. Уравнение (6.5) может с равным успехом быть записано для ошибки регулирования Процесс регулирования определяется решением дифференциального уравнения как сумма двух решений — частного решения неоднородного уравнения (6.5) с правой частью и общего решения уравнения (6.5) без правой части, т. е. с правой частью, равной нулю:
В случае
Система будет называться устойчивой, если с течением времени при
Общее решение ищется в виде Се. Дифференцируя это выражение
Полученное алгебраическое уравнение называется характеристическим. Корни его
Однако здесь буква Так как в решении характеристического уравнения содержится
где Корни характеристического уравнения определяются только видом левой части уравнения (6.5). Постоянные интегрирования определяются также и видом правой его части. Поэтому быстрота затухания и форма переходного процесса определяются как левой, так и правой частями исходного дифференциального уравнения.
Рис. 6.2. Однако поскольку в понятие устойчивости системы входит только факт наличия или отсутствия затухания переходного процесса (независимо от быстроты затухания и формы переходного процесса), то устойчивость линейной системы не зависит от вида правой части дифференциального уравнения (6.5) и определяется только характеристическим уравнением (6.9). Чтобы определить, устойчива система или нет, нет необходимости решать характеристическое уравнение и определять его корни. Выясним, какие свойства корней необходимы и достаточны для того, чтобы система была устойчивой. Корни могут быть вещественными, комплексными и чисто мнимыми. Рассмотрим эти случаи. 1. Вещественный корень. Пусть один из корней, например При 2. Комплексные корни. Комплексные корни бывают попарно сопряженными. При отрицательной вещественной части два корня, например определяемые этими корнями в уравнении (6.8), могут быть представлены в виде
где Нетрудно видеть, что в этом случае получаются затухающие колебания, причем мнимая часть корня Р представляет собой круговую частоту затухающих колебаний, При положительной вещественной части 3. Чисто мнимые корни, В этом случае
Такой процесс изображен на рис. 6.2, г.
Рис. 6.3. Следовательно, для затухания переходного процесса необходимо, чтобы вещественные части корней были отрицательными. Это относится как к вещественным, так и к комплексным корням. Если [хотя бы один корень характеристического уравнения будет иметь положительную вещественную часть, то переходный процесс в целом будет расходиться, т. е. система окажется неустойчивой. Корни характеристического уравнения можно представить в виде точек на комплексной плоскости величины Для устойчивости линейной системы необходимо и достаточно, чтобы все корни лежали слева от мнимой оси плоскости корней. Если хотя бы один корень окажется справа от мнимой оси, то система будет неустойчивой. Таким образом, мнимая ось представляет собой граничную линию в плоскости корней, за которую не должны переходить корни характеристического уравнения. Вся левая полуплоскость представляет собой при этом область устойчивости. Превращение устойчивой системы в неустойчивую произойдет в том случае, если хотя бы один вещественный или пара комплексных корней перейдет из левой полуплоскости в правую. Границей перехода будет так называемая граница устойчивости системы. Система будет находиться на границе устойчивости при наличии: 1) нулевого корня; 2) пары чисто мнимых корней; 3) бесконечного корня. Во всех трех случаях предполагается, что все остальные корни имеют отрицательные вещественные части. В первом случае вещественный корень попадает на границу устойчивости (ось мнимых) в начале координат, т. е. выполняется условие
и система будет устойчивой не относительно регулируемой величины у, а относительно ее скорости изменения величины может принимать произвольные значения. Такую систему называют нейтрально устойчивой, имея в виду ее безразличие к значению самой регулируемой величины. На границе устойчивости второго типа, которая называется колебательной границей устойчивости, два корня попадают на ось мнимых. Система в этом случае будет иметь незатухающие гармонические колебания с постоянной амплитудой (рис. 6.2, г). Наконец, вещественный корень может попасть из левой полуплоскости в правую, проходя через бесконечность. В этом случае соответствующее слагаемое Как было сказано выше, ни одна реальная система автоматического регулирования не является строго линейной. Линейные характеристики звеньев и линейные дифференциальные уравнения получаются путем линеаризации реальных характеристик и уравнений. При разложении в ряд Тейлора удерживались линейные члены и отбрасывались члены высших порядков, которые для малых отклонений считались пренебрежимо малыми. Обоснование законности такой линеаризации содержится в теоремах Ляпунова. 1. Если характеристическое уравнение линеаризованной системы имеет все корни с отрицательными вещественными частями, то реальная система будет также устойчивой, т. е. малые нелинейные члены не могут в этом случае нарушить устойчивость системы. 2. Если характеристическое уравнение линеаризованной системы имеет хотя бы один корень с положительной вещественной частью, то реальная система будет также неустойчивой, т. е. малые нелинейные члены не могут сделать ее устойчивой. 3. При наличии нулевых и чисто мнимых корней поведение реальной системы не всегда даже качественно определяется ее линеаризованными уравнениями. При этом даже малые нелинейные члены могут коренным образом изменить вид переходного процесса, сделав систему устойчивой или неустойчивой. Опираясь в своих линейных расчетах на эти теоремы Ляпунова, необходимо всегда иметь в виду, что они, во-первых, относятся к исследованию устойчивости в малом, т. е. в малой окрестности данного состояния равновесия, когда кривая К сильно выраженным нелинейностям на больших участках, в том числе и к нелинейностям релейного типа, эти теоремы, вообще говоря, неприменимы. Для исследования устойчивости нелинейных систем общего вида имеются другие теоремы Ляпунова, так называемый прямой метод Ляпунова или, по старой терминологии, «вторая метода» Ляпунова, которые будут изложены ниже, в главе 17. Далеко не всегда бывает удобно вычислять корни характеристического уравнения. Поэтому желательно иметь такие критерии, с помощью которых можно было бы судить об устойчивости системы непосредственно по коэффициентам характеристического уравнения, без вычисления корней. Эти критерии называются критериями устойчивости. Покажем, что необходимым (но не достаточным) условием устойчивости системы является положительность всех коэффициентов характеристического уравнения. Это значит, что при положительности всех коэффициентов система может быть устойчивой, но не исключена возможность неустойчивости системы. Если же не все коэффициенты характеристического уравнения положительны, то система наверняка неустойчива и никаких дополнительных исследований устойчивости не требуется. Заметим, что вместо того, чтобы быть положительными, все коэффициенты характеристического уравнения могут быть отрицательными. Умножая все члены характеристического уравнения на минус единицу, можно сделать все коэффициенты положительными, т. е. в этом случае выполнить указанное выше требование. Для доказательства сформулированного необходимого условия устойчивости будем вначале предполагать, что все корни вещественные. Представим левую часть характеристического уравнения (6.9) в виде произведения
где В устойчивой системе все корни должны быть отрицательными, т. е.
Если теперь раскрыть скобки и вернуться к уравнению вида (6.9), то все коэффициенты уравнения получатся положительными, так как, перемножая и складывая положительные величины При наличии в решении характеристического уравнения комплексных корней с отрицательной вещественной частью, например
Очевидно, что появление такого множителя не может изменить вывод о положительности всех коэффициентов характеристического уравнения. Имея в виду рассмотренное необходимое условие устойчивости, далее будем всегда предполагать, что все коэффициенты характеристического уравнения положительны. Необходимое условие устойчивости становится достаточным только для уравнений первого и второго порядков. В этом случае система будет устойчивой при положительности всех коэффициентов характеристического уравнения, в чем нетрудно убедиться прямым нахождением корней уравнения.
|
1 |
Оглавление
|