Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 6.2. Критерий устойчивости ГурвицаЗадача отыскания критерия устойчивости для систем, описываемых дифференциальными уравнениями любого порядка, была сформулирована Максвеллом в 1868 году. Эта задача была впервые решена в алгебраической форме Раусом в 1873 году для уравнений четвертой и пятой степени и в 1877 году — полностью. Поскольку критерий Рауса дан в форме алгоритма, определяющего последовательность математических операций, необходимых для решения задачи, использование его в практике является неудобным. Поэтому большее распространение получил алгебраический критерий устойчивости, сформулированный в 1895 году математиком А. Гурвицем. Этот критерий был найден Гурвицем по просьбе словацкого профессора Стодолы, занимавшегося исследованием процесса регулирования турбин. Ниже критерий Гурвица приводится без доказательства. Для характеристического уравнения (6.9) составим квадратную матрицу (таблицу) коэффициентов, содержащую
Эта таблица составляется следующим образом. По диагонали от левого верхнего до правого нижнего углов выписываются все коэффициенты по порядку от а до Критерий устойчивости сводится к тому, что при Определители Гурвица составляются по следующему правилу (см. (6.11)):
Последний определитель включает в себя всю матрицу. Но так как в последнем столбце матрицы все элементы, кроме нижнего, равны нулю, то последний определитель Гурвица выражается через предпоследний следующим образом:
Однако в устойчивой системе предпоследний определитель тоже должен быть положительным. Поэтому условие положительности последнего определителя сводится к условию Условия нахождения системы на границе устойчивости можно получить, приравнивая нулю последний определитель: Раскрывая определители, фигурирующие в общей формулировке критерия устойчивости Гурвица, можно получить в виде частных случаев критерии устойчивости для системы первого, второго, третьего, четвертого и более высоких порядков. 1. Уравнение первого порядка
Для этого уравнения критерий Гурвица дает
т. е. коэффициенты характеристического уравнения должны быть положительными. 2. Уравнение второго порядка
Для этого уравнения критерий Гурвица требует
Последний определитель, как отмечалось выше, сводится к условию положительности последнего коэффициента: Таким образом, и для уравнения второго порядка необходимым и достаточным условием устойчивости является положительность всех коэффициентов характеристического уравнения. 3. Уравнение третьего порядка
Для этого уравнения получаем: условия
Третий (последний) определитель Следовательно, для уравнения третьего порядка уже недостаточно положительности всех коэффициентов характеристического уравнения. Требуется еще выполнение определенного соотношения между коэффициентами: 4. Уравнение четвертого порядка
На основании критерия Гурвица можно получить, что для уравнения четвертого порядка, кроме положительности всех коэффициентов, требуется выполнение условия
5. Уравнение пятого порядка
Для уравнения пятого порядка, кроме положительности всех коэффициентов, должны выполняться еще два условия:
Как видно, уже для уравнения пятой степени условия устойчивости по критерию Гурвица получаются достаточно громоздкими. Поэтому использование этого критерия практически ограничивается уравнениями четвертого порядка. Существенным недостатком критерия Гурвица является также то, что для уравнений высоких порядков в лучшем случае можно получить ответ о том, устойчива или неустойчива система автоматического регулирования. При этом в случае неустойчивой системы критерий не дает ответа на то, каким образом надо изменить параметры системы, чтобы сделать ее устойчивой. Это обстоятельство привело к поискам других критериев, которые были бы более удобными в инженерной практике.
Рис. 6.4. Для иллюстрации применения критерия Гурвица рассмотрим пример на определение устойчивости дистанционной следящей системы. Принципиальная и структурная схемы изображены на рис. 6.4. В качестве чувствительного элемента использованы два сельсина
где Передаточная функция усилителя:
где
где Передаточная функция редуктора (Р) равна его коэффициенту передачи определяемому передаточным отношением:
Так как цепь регулирования состоит из включенных последовательно звеньев, то передаточная функция разомкнутой цепи будет равна произведению передаточных функций отдельных звеньев:
где Характеристическое уравнение:
После подстановки
В данном случае характеристическое уравнение имеет третий порядок. Нетрудно видеть, что условие положительности всех коэффициентов выполняется всегда, если выполнено условие Дополнительное условие
которое и является условием устойчивости рассматриваемой системы. Из этого неравенства, в частности, можно заметить, что увеличение каждой постоянной времени сказывается отрицательно на устойчивости системы, так как при этом снижается предельное значение общего коэффициента усиления К, при котором система еще остается устойчивой.
|
1 |
Оглавление
|