Главная > Анализ временных рядов, прогноз и управление, Т1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

4.2.3. Обращенное представление модели

Модель, выражающая  через  и предшествующие . В разд. 3.1.1 было показано, что модель

можно записать также в обращенной форме:

или

                                                                           (4.2.20)

Здесь  равно бесконечной взвешенной сумме предыдущих значений  плюс случайный импульс, т. е.

Согласно условию обратимости, веса  в (4.2.20) должны образовывать сходящийся ряд, т. е.  должно сходиться на единичной окружности или внутри нее.

Общее выражение для весов . Чтобы вывести формулу для весов  общей модели АРПСС, мы подставим (4.2.20) в уравнение

и получим

.

Отсюда веса  могут быть явно выражены приравниванием коэффициентов при  в левой и правой частях уравнения

                     (                                                      (4.2.21)

или, в развернутом виде,

            (4.2.22)

Нужно отметить, что для , больших чем  и ,  т. е. для таких, что

                              если

                                 если   

веса  удовлетворяют разностному уравнению, определяемому оператором скользящего среднего

где  действует теперь на . Отсюда для достаточно больших  веса  будут вести себя сходно с автокорреляционной функцией (3.2.5) процесса авторегрессии, т.е. состоять из суммы затухающих экспонент и затухающих синусоид.

Другой интересный факт заключается в том, что при  веса  в (4.2.20) в сумме равны 1. Это можно проверить, подставив в (4.2.21) значение . Поскольку  равно нулю при , то , так как корни уравнения  лежат вне единичного круга. Тогда из (4.2.21) следует, что  и

                                                                                                 (4.2.23)

Поэтому при  процесс можно представить в форме

                                                                                       (4.2.24)

где

                                  

— взвешенное среднее предыдущих значений процесса. Пример. Рассмотрим опять в качестве примера процесс АРПСС(1, 1, 1)

 Тогда, пользуясь (4.2.21), получим

так что

Первые семь весов , соответствующие и , приведены в табл. 4.3. Итак, -е значение процесса может быть найдено как взвешенное среднее предшествующих значений плюс дополнительный импульс по формуле

.

Таблица 4.3. Первые семь весов процесса АРПСС (1,1,1) при

1

2

3

4

5

6

7

0,2

0,4

0,2

0,1

0,05

0,025

0,0125

Отметим, в частности, что веса  уменьшаются для удаляющихся значений . Это свойство является следствием требования обратимости ряда, которое в данном случае равносильно требованию . Кстати, заметим, что для статистических моделей, описывающих практически встречающиеся временные ряды, сходящиеся веса обычно сравнительно быстро убывают до нуля. Поэтому, хотя  теоретически зависит от отдаленного прошлого, представление

                                   

обычно показывает, что  существенно зависит только от сравнительно недавних предшествующих значений временного ряда . Это остается справедливым, несмотря на то что для нестационарных моделей с веса  в представлении процесса в виде «взвешенных импульсов»

                                      

не сходятся. Это связано с тем, что вся информация , поставляемая значениями давно возникших импульсов содержится в недавних значениях ряда . В частности, условное математическое ожидание , теоретически определяемое через все значения процесса вплоть до момента , может быть достаточно точно вычислено по нескольким недавним значениям временного ряда. Этот факт особенно важен при практическом прогнозировании.

 

1
Оглавление
email@scask.ru