Главная > Оптимальные и адаптивные системы
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Особенности оптимальных систем программного управления и стабилизации.

Рассмотрим более подробно связь и различие программного и стабилизирующего управлений. В связи с этим рассмотрим общую структурную схему реализации этих управлений (рис. 1.2.1), на которой объект управления описывается уравнениями (1.1.1), а регулятор реализует стабилизирующие управления (1.2.10). Объект вместе с задатчиками программного управления и движения образует систему программного управления, а объект вместе с регулятором — систему стабилизации программного движения. На рис. 1.3.1 не показаны исполнительные и измерительные устройства, которые в соответствии с примечанием 1.2.1 включены в модель объекта.

Рис. 1.2.1.

Различие способа функционирования системы программного управления и системы стабилизации состоит в следующем.

1. Для первой из этих систем начальные условия (1.1.2) известны до начала проектирования, а для второй начальные условия неизвестны, известно лишь, что они находятся в пределах, устанавливаемых неравенством (1.2.2).

2. В первом случае управления являются явными функциями времени, а во втором — функциями измеряемых переменных состояния (а в общем случае и времени). Таким образом, в первом случае управление осуществляется по разомкнутому циклу, а во втором — по принципу обратной связи.

3. Эффективность работы системы программного управления оценивается определенным интегралом (1.1.4), в котором функция определяется физической природой объекта управления.

В системе стабилизации критерий (показатель) качества (1.2.9) ее функционирования часто не связан с физической природой объекта управления, а его коэффициенты определяются исходя из инженерных требований (времени переходного процесса от истинного движения к программному, перерегулирования при этом движения, установившейся ошибки в осуществлении программного движения и т. п.). Однако в теории оптимального управления полагают критерий (1.2.9), аналогично (1.1.2), заданным, оставляя вопросы выбора его коэффициентов (а в общем случае и структуры) за пределами этой теории.

4. При построении стабилизирующего управления (1.2.10) обычно используют уравнения первого приближения (1.2.5). Это объясняется тем, что стабилизирующее управление предназначено для уменьшения отклонения а при малых значениях этих отклонений уравнения (1.2.4) и (1.2.5) имеют близкие решения, так как функции зависят от квадратов, кубов и т. д. этих отклонений, и поэтому эти функции можно опустить.

Линейный характер уравнений первого приближения существенно упрощает процедуры построения стабилизирующих управлений (1.2.10). Использование же уравнений первого приближения при построении программного управления, как правило, недопустимо.

1
Оглавление
email@scask.ru