1.6. Моменты и кумулянты многомерного распределения
1. Для совокупности случайных величии
может быть введена как плотность вероятности
так и условные плотности вероятности, которые могут иметь различные «мерности» в зависимости от числа аргументов и числа фиксируемых параметров.
Так, например, условная плотность вероятности случайных величин
при условии, что случайные величины
имеют фиксированные значения
определяется как
2. Моменты и кумулянты
-мерного распределения можно определить разложением в кратные степенные ряды характеристической функции и ее логарифма:
(1.6.1)
Таким образом,
(1.6.2)
Из симметрии (1.6.1) по отношению к
следует симметричность моментов и кумулянтов по отношению к парам индексов
.
Часто бывает полезным изменить порядок суммирования и записать характеристическую функцию в другой форме:
(1.6.3)
Здесь сначала суммируются моменты и кумулянты, имеющие одинаковый порядок (внутренние суммы, в которых
, а затем суммирование идет по порядкам.
Отличие от нуля совместных кумулянтов говорит о существовании статистической зависимости между соответствующими случайными величинами. В тех случаях, когда порядок расположения рассматриваемых случайных величин не меняется и возможность путаницы исключена, верхние индексы у моментов и кумулянтов и запятые между нижними индексами по-прежнему будем опускать.
Между многомерными моментами и кумулянтами также существуют связи, подобные (1.3.2). Например, совместные моменты третьего и четвертого порядков для трех случайных величин следующим образом выражаются через кумулянты: