Главная > Теоретические основы техники связи
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

6.2. КВАНТОВАНИЕ СИГНАЛОВ В ПРИЕМНИКЕ

В предыдущем разделе мы рассмотрели задачу построения передатчика, способного эффективно передавать одно из

сообщений даже при больших значениях Мы убедились, что для канала с аддитивным белым гауссовским шумом нетрудно указать ансамбль систем связи, обладающих легко реализуемыми передатчиками, для которого средняя вероятность ошибки удовлетворяет неравенству

причем близко к оптимальному значению.

Проблему построения эффективного приемника решить труднее. Верхняя оценка (6.38б) получена в предположении, что каждая система связи в ансамбле имеет оптимальный приемник. Оптимальные приемники для сигналов вида

были изучены в гл. 4. Одна из возможных реализаций оптимального приемника, представленная на фиг. 6.12, состоит из блока фильтров, согласованных с сигналами и следующего за ним устройства, вычисляющего скалярных произведений

(кликните для просмотра скана)

и определяющего, при каком решающая статистика

максимальна. [В соотношениях и ниже в настоящей главе предполагается, что сообщения априори равновероятны.]

Ясно, что сложность блока согласованных фильтров, изображенного на фиг. 6.12, с увеличением растет не быстрее, чем линейно. В самом деле, если совокупность представляет собой последовательность одинаковых неперекрывающихся во времени импульсов длительности то, как указывалось в разд. 6.1 в связи с построением схемы модуляции, эта сложность не зависит от . В этом случае, как показано на фиг. 6.13, можно использовать один согласованный фильтр, а рсгпепие принимать на основе выборки отсчетов его выходного сигнала в моменты времени

С другой стороны, при этом остается задача вычисления всей совокупности решающих статистик На первый взгляд может показаться, что применение быстродействующей вычислительной машины позволяет справиться с этой задачей. Однако при больших это сделать невозможно; согласно соотношениям число операций, необходимое для вычисления статистик равно При бит/сек и сек получим что приводит к необходимости того, чтобы серийная вычислительная машина тратила на вычисление каждой суммы только нсек. С экспоненциальным ростом шутить нельзя!

С другой стороны, статистики можно вычислить не последовательно, а параллельно во времени, используя, например, взвешивающие цепи на сопротивлениях и суммирующие шины. По для этого требуется приблизительно сопротивлений, а экспоненциальный рост числа деталей в машине ничуть не привлекательнее, чем экспоненциальный рост скорости вычислений. Вообще единственный выход — остановиться на неоптимальном приемнике.

Поскольку мы примирились с некоторым ухудшением характеристик методов передачи, наша задача — пайти процедуру приема, для которой это ухудшение лежало бы в допустимых пределах. Центральную роль в нашем рассмотрении будут играть специализированные цифровые вычислительные машины, называемые декодерами (главным образом ввиду большой гибкости, с которой они обрабатывают данные).

Ухудшение характеристик методов передачи при использовании декодера определяется двумя причинами. Во-первых, компоненты вектора на выходе группы согласованных фильтров принимают значения на непрерывном множестве, тогда как в цифровые вычислительные машины должны поступать дискретные данные. Поэтому перед вычислительной машиной обычно ставят амплитудные квантующие устройства какого-либо типа. Во-вторых, число вычислительных операций, выполняемых вычислительной машиной, с увеличением длительности сигнала не должно расти быстрее, чем линейно. Первый источник потерь будет рассмотрен в оставшейся части этого раздела; второй — в разд. 6.4.

МЕРА ПОТЕРЬ

Очевидно, что преобразование -мерного вектора в дискретный вектор перед введением его в вычислительную машину является необратимой операцией и, вообще говоря, увеличивает достижимую вероятность ошибки. Интуитивно ясно, что это увеличение небольшое при очень малом шаге квантования. С другой стороны, с точки зрения уменьшения требуемого объема памяти, а следовательно, и стоимости декодера более желательно

грубое квантование: если каждая компонента вектора квантуется на уровней степень числа 2), то для запоминания квантованного вектора в вычислительной машине требуется двоичных разрядов памяти.

Не имея некоторой меры влияния квантования на вероятность ошибки, нельзя сравнить с инженерной точки зрения стоимость систем и их характеристики. Особенно полезно определить меру потерь, исходя из показателя экспоненты верхней оценки вероятности ошибки при случайном кодировании.

До сих пор мы вычисляли экспоненциальный показатель в оцепке только для ансамбля систем связи, использующих кодеры с проверкой на четность, за которыми следуют преобразователи и оптимальные (без предварительного квантования) приемники. Теперь вычислим параметр в оценке вероятности ошибки для ансамбля с точно такими же передатчиками, но с приемниками, у которых между согласованными фильтром и декодером поставлено кваптующее устройство схема приемника изобралена на фиг. 6.14. Предполагается, что сам декодер оптимален, т. е. по квантованному вектору и известной совокупности сигналов он определяет, какое из сообщений имеет наибольшую апостериорную вероятность Разность между параметрами служит разумной мерой потерь при квантовании.

1
Оглавление
email@scask.ru