Главная > Теоретические основы техники связи
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2.4. МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ

Уже отмечалось, что, хотя случайное явление непредсказуемо в деталях, некоторые свойства в средпем проявляют достаточную регулярность. Реальному эмпирическому среднему значению в математической модели теории вероятностей соответствует математическое ожидание случайной величины.

В качестве простого примера рассмотрим независимых бросаний обычной игральной кости, грани которой пронумерованы цифрами от 1 до 6. Пусть обозначает результат бросания. Тогда при любом принимает целые значения, заключенные между 1 и 6. Эмпирическое среднее значение получаемое в результате бросаний, определяется равенством

Суммирование в этом выражении можно провести следующим способом. Обозначим через число бросаний, в результате которых выпало у. Тогда, перегруппировав слагаемые, получим

где относительная частота результата определяемая соотношением (2.1).

Поскольку случайные величины, так что их значения точно непредсказуемы, то такими же являются и их эмпирические средние Однако если велико, то почти всегда можно наблюдать, что устанавливается около некоторого частного значения. В математической модели этому значению соответствует вероятность Таким образом, можно ожидать, что при больших значениях величина установится около значения , определяемого равенством

Величина называется математическим ожиданием случайной величины

Равенством (2.124) математическое ожидание определено для конкретного эксперимента бросания кости. В общем случае математическое ожидание случайной величины с плотностью распределения вероятностей определяется равенством

Заметим, что последнее соотношение переходит в соотношение (2.124), если

Рассматривая закон больших чисел, мы увидим, что величина является тем числом, к которому сходится эмпирическое среднее Математическое ожидание случайной величины часто называют также средним значением случайной величины и обозначают через

ОСНОВНАЯ ТЕОРЕМА О МАТЕМАТИЧЕСКОМ ОЖИДАНИИ

Во многих случаях приходится вычислять математическое ожидание случайной величины которая определяется посредством преобразования некоторого случайного вектора у:

где сопоставляет каждому -мерному вектору некоторое вещественное число. Хотя можно вычислить по формуле (2.125), найдя предварительно по плотности и преобразованию часто менее трудоемким оказывается использование теоремы о математическом ожидании, которая утверждает, что

Это соотношение может быть записано кратко как

Интуитивную уверенность в справедливости равенства (2.126в) можно укрепить, проследив приводимое ниже в общих чертах его доказательство. Разобьем вещественную прямую (на которой принимает значения случайная величина на большое число малых соприкасающихся, но не пересекающихся интервалов длины как показано на фиг. 2.37. Обозначим через интервал Тогда

Мы знаем, что вероятность события можно записать также, используя плотность , то

где Поскольку из определения события вытекает, что если то

Фиг. 2.37. Разбиение вещественной прямой на непересекающиеся соприкасающиеся интервалы.

где приближенные равенства выполняются при малом А. Суммируя по всем получаем

Последнее равенство вытекает здесь из того, что события не пересекаются и их объединение включает все [функция отображает каждое значение Р в некоторое вещественное число]. Для завершения доказательства теоремы следует перейти к пределу при .

В качестве примера использования теоремы (2.126) рассмотрим простейшее одномерное преобразопание Воспользуемся соотношениями (2.125) и (2.75):

Положим в первом интеграле и во втором интеграле.

Тогда

в соответствии с равенством (2.1266).

Итак, математическое ожидание случайной пеличины это некоторое число, определяемое отображением из на вещественную прямую и вероятностями, приписанными событиям из пространства Из соотношения (2.126) следует, что это число не зависит от того, задается ли явно или не явно с помощью и преобразования

Линейность. Одним из наиболее важных свойств математического ожидания является его линейность. Пусть х и у две случайные величины. Рассмотрим линейное преобразование

Для нахождения математического ожидания новой случайной величины z воспользуемся свойством (2.126):

Вычисляя интеграл по (3 в первом слагаемом и интеграл по во втором, получаем

или

Таким образом, можно трактовать как линейный оператор; другими словами, математическое ожидание некоторой из вешенной суммы случайных величин есть взвешенная сумма математических ожиданий этих величин:

Ото свойство не зависит от того, являются ли величины статистически независимыми.

Математическое ожидание произведения. Вообще говоря, математическое ожидание случайной величины, полученной нелинейным преобразованием случайных величин, например не равно результату применения этого преобразования к математическим ожиданиям; так, например, выражение

обычно нельзя упростить. Если, однако, статистически независимы, то распадается на множители и

Интегрирование можно проводить отдельно по и по в результате получаем

или

Итак, статистическая независимость случайных величин является достаточным условием для того, чтобы среднее значение их произведения было равно произведению их средних значений. Следует подчеркнуть, что обратное утверждение не верно; из равенства не следует обязательно статистическая независимость случайных величин

1
Оглавление
email@scask.ru