Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
7. Пример, показывающий наименьшую негэнтропию, необходимую для наблюденияОбсудим упрощенный пример, на котором действительно возможно показать существование наименьшей негэнтропии, требуемой для наблюдения. Рассмотрим снова задачу раздела 4 главы 13 об определении местоположения частицы при помощи луча света. Возьмем последовательность световых импульсов длительностью
Рис. 14.1. Световые импульсы длительностью Такая последовательность импульсов требует полосы частот, определяемой в основном длительностью короткого импульса. Если то имеем согласно (13.32)
Вместо импульсов
(рис. 14.2). Обе функции
Рис. 14.2. Световые импульсы длительностью Эта наивысшая частота имеет минимум, когда
Этот случай соответствует, очевидно, наименьшему количеству энергии, требуемому для наблюдения, и, следовательно, наименьшему увеличению энтропии. Рассмотрим ситуацию более внимательно. Сначала мы можем легко вычислить информацию. Мы применяем последовательность импульсов
Чем меньше длительность импульса Для того чтобы подсчитать используемую при наблюдении энтропию, мы исследуем сначала спектр нашей функции (14.45)
Симметрия относительно
Теперь мы должны вспомнить о существовании шума. Очень малые амплитуды в спектре (14.51) будут совершенно стерты вследствие искажения сигнала шумом. Предположим, что мы можем устранить эти высокие частоты и сохранить только конечный спектр, простирающийся до частоты
Случай
с одним членом вместо прямоугольной ломаной (рис. 14.3). Для того чтобы преодолеть тепловой шум, каждая из сохраняемых составляющих должна иметь энергию порядка В общем, полная энергия конечного спектра равна
где численные множители
Рис. 14.3. Приближение для системы импульсов при
Рис. 14.4. Информация и связанное с ней увеличение энтропии в функции Эта энергия рассеивается и поглощается (например, в фотоэлементе) за время наблюдения, что дает увеличение энтропии
изменяющееся в соответствии с (14.52). Кривая имеет минимум при Этот пример снова доказывает, что увеличение энтропии всегда больше полученной информации и что количество энтропии, требуемой для наблюдения, не может быть ниже определенного предела, равного в нашем примере
|
1 |
Оглавление
|