Главная > Наука и теория информации
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

5. Коэффициент передачи вычислительной машины

Исследуем соотношение между входным и выходным спектрами. Представим функции интегралами Фурье, как в (19.12), и получим:

Подставим эти выражения в (19.30) и получим интегралы с в обеих частях. Левая часть имеет множитель

тогда как в правой части имеем:

Так как обе функции в (19.30) равны, то равны и их преобразования Фурье:

Из этого соотношения находим коэффициент передачи

дающий отношение выходного спектра к входному для рассматриваемой вычислительной машины. Коэффициент передачи выражается рациональной функцией аргумента

где 8 — интервал отсчетов. Весьма примечательно, что такого рода вычисление, как представленное выражением (19.30), может быть исследовано этим методом и дает на каждой частоте выходной спектр , зависящий только от входного спектра на той же частоте. Коэффициент передачи (19.40) был получен Зальцером и позволил ему рассмотреть целый ряд задач, в которых вычислительные машины и обычные схемы были объединены в сложную систему управления.

Мы могли бы с равным успехом начать с (19.31), где предполагалось, что решение предыдущей системы получено для того, чтобы исключить Это соотношение дает, как и прежде,

многочлен или бесконечный ряд по z.

Все это рассуждение полностью согласуется с точкой зрения на роль вычислительной машины, развитой в предыдущих разделах: вычислительная машина представляет собой автоматическое устройство для обработки информации, точно так же как станок обрабатывает куски металла. Новая информация не создается, и на выходе вычислительной машины получается в точности то же количество информации, какое

имелось на входе (в идеальном случае без потерь), только другим образом кодированное.

Мы основывали наше рассуждение на методе Фурье, тогда как Линвилл и Зальцер применяли преобразование Лапласа. Оба метода эквивалентны, и формулы Зальцера могут быть получены простой заменой на s:

Для общности рекомендуется рассматривать s как комплексную величину, но (интервал отсчетов) — всегда вещественная величина. Мы нашли, что дискретные данные имеют периодический спектр (см. раздел 3):

Это свойство легко перевести на переменную s, что означает:

Рис. 19.2. Горизонтальные полоски на комплексной плоскости s, в которых значения повторяются.

В плоскости комплексной переменной s функция Л принимает одинаковые значения в следующих друг за другом полосах, как показано на рис. 19.2. Если функция известна в пределах одной из этих полос (например, в заштрихованной полосе), то она известна на всей плоскости, так как периодически повторяется на других полосах.

1
Оглавление
email@scask.ru