Главная > Основы теории случайных процессов
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 3. ВЕРОЯТНОСТИ ВЫРОЖДЕНИЯ

Мы хотим найти вероятность того, что популяция выродится, т. е. для некоторого Очевидно, если то при всех

Заметим сначала, что вырождения никогда не произойдет, если вероятность того, что индивидуум не порождает ни одного потомка, равна нулю, т. е. если Таким образом, при исследовании вероятности вырождения предположим, что Пусть

В силу формулы (2.3)

Так как строго возрастающая функция (степенной ряд с неотрицательными коэффициентами и то Предположим, что

Тогда Этим доказано, что монотонно возрастающая последовательность, ограниченная единицей. Следовательно, существует

Поскольку непрерывна при (непрерывность в точке следует из леммы Абеля, см. гл. 2, лемма 5.1), полагая в (3.1), получаем

Поскольку вероятность вырождения популяции не позже, чем за поколений, то — вероятность вырождения популяции, и из (3.2) следует, что — корень уравнения

Покажем теперь, что — наименьший положительный корень уравнения (3.3). Пусть — положительный корень уравнения (3.3). Тогда Предположим, что Тогда в силу Таким образом, по индукции показано, что Для всех Отсюда следует, что т. е. — наименьший положительный корень уравнения (3.3).

Теперь предположим, что Тогда выпуклая функция При поскольку Следовательно, график функции может пересекать прямую с наклоном 45°, идущую из начала координат, самое большее в двух точках. Мы знаем, что и поэтому пересечение определенно имеет место в точке (1,1). Очевидно, может иметь место один из двух случаев, представленных на рис. 1 и 2. Если то тангенс угла наклона касательной к графику в точке больше 1 и имеет место случай, представленный на рис. 1. В этом случае Если то тангенс угла наклона касательной в точке меньше или равен 1 и имеет место ситуация, представленная на рис. 2. Тогда с необходимостью Таким образом, мы доказали, что вероятность вырождения равна 1, если и меньше 1, если Другими словами, вырождение определенно имеет место тогда и только тогда, когда среднее число потомков от одного индивидуума не превышает 1.

Далее, заметим, что при (рис. 2). По индукции имеем для всех

(кликните для просмотра скана)

Но , и, таким образом, Пусть Тогда.

В случае когда имеем (рис. 1). По индукции

Отсюда

Предел в (3.4) должен равняться , так как если бы то и указанная в (3.4) сходимость была бы невозможна в силу соотношения Таким образом,

Из того факта, что сходится к постоянной при следует, что в разложении

первый коэффициент сходится к при а все остальные коэффициенты сходятся к 0 при

Следовательно, при любом значении вероятность того, что поколение будет состоять из любого положительного конечного числа индивидуумов, стремится к 0 при в то время как вероятность вырождения стремится к . В этом случае мы скажем, что при с вероятностью .

Этот результат является также следствием общей теории цепей Маркова, поскольку марковская цепь, определяемая последовательностью имеет единственное поглощающее состояние и поэтому так как являются автоматически переходными (невозвратными) состояниями.

В заключение параграфа отметим интересное свойство, состоящее в том, что условное математическое ожидание величины положительное целое число) при условии, что известно равно т. е. Чтобы доказать это, рассмотрим сначала случай

Предположим теперь, что соотношение установлено для числа и докажем его для Имеем

где использована марковская природа последовательности Но и в силу индукции Таким образом,

Рассмотрим теперь случайные величины

Тогда в силу (3.5) имеем

Можно записать, что для

откуда следует, что последовательность является мартингалом.

1
Оглавление
email@scask.ru