Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 4. Тепловой режим сжатого газаВ адиабатическом приближении температура газа, сжатого на фронте волны, дается выражением
для малых Будем теперь последовательно отказываться от упрощающих предположений и строить более реалистическую картину распределения температуры и термического режима сжатого газа. В духе метода последовательных приближений давление возьмем то, которое получалось ранее, в адиабатической картине. Прежде всего отметим, что в исходном, невозмущенном газе давление и температура отличались от нуля. Поэтому при плавном сжатии до заданного давления этот газ сожмется до конечной плотности и, соответственно, приобретет конечную температуру. Рассматривая тепловой режим однородной Вселенной, мы нашли (гл. 8, § 2), что теплообмен вещества и излучения эффективно прекращается примерно при Грубо можно считать, что плотность равна За фронтом Следующий этап заключается в учете тепловых потерь. Тепловое излучение единицы объема при свободно-свободных переходах дается выражением
В сжатом газе излучение энергии происходит при постоянном давлении. Поэтому нужно приравнять
и выразить скорость теплоотдачи через давление и температуру:
Отсюда время охлаждения до нулевой температуры
В действительности охлаждение происходит лишь до температуры рекомбинации, порядка Важно, что время рекомбинации сильно зависит от начальной температуры. В каждый данный момент получается резкая граница. Часть газа с Таким образом, получается весьма своеобразное распределение температуры (рис. 49) и соответствующее ему распределение плотности числа частиц (рис. 50). Численные расчеты одномерной задачи см. Дорошкевич, Шандарин (1973). При учете неодномерности задачи расчеты становятся более сложными [Дорошкевич, Шандарин (1974)].
Рис. 49. Зависимость температуры от лагранжевой координаты
Рис. 50. Зависимость плотности числа частиц от лагранжевой координаты Отличительные черты распределения можно суммировать следующим образом: 1) Около 1% вещества подвергалось только адиабатическому сжатию и имеет весьма низкую температуру. 2) Около 2—3% вещества нагрето ударной волной до температуры от 100 до 3) Около 20% вещества было сжато ударной волной и нагрето до температуры выше 4) Около 25% вещества нагрето волной до температуры выше 5) Половина вещества не подвергалась действию ударной волны вовсе. Из наблюдений известно, что нейтральный водород практически отсутствует в пространстве между скоплениями галактик. Убедительным доказательством является спектр квазаров с красным смещением Высказывалось предположение, что излучение сжатого газа («блинов») может ионизовать газ, не подвергавшийся действию ударной волны. Вероятно, однако, этого излучения недостаточно. Если принять более высокую температуру «блинов», то, наряду с ультрафиолетовым, усилится чрезмерно рентгеновское излучение. Оценки см. Дорошкевич, Шандарин (1975). Возможно, что ионизацию осуществляют ранние квазары с не наблюдаемые непосредственно. Все расчеты весьма затруднены неопределенностью важнейших исходных параметров — постоянной Хаббла и общей плотности вещества. В зависимости от принятых параметров в интервале от Можно ли непосредственно наблюдать «блины» (протоскопления) в далеком прошлом, до превращения их в современное состояние? Оценки показывают, что оптическое и ультрафиолетовое излучение вряд ли когда-либо удастся наблюдать на фоне других близких источников. Рентгеновское излучение можно наблюдать, по-видимому, лишь у статистически редких, самых больших скоплений. При этом важно, что газ высокой температуры не остывает за счет излучения. Если газ гравитационно связан, то он не подвергается расширению, а значит, не остывает адиабатически. Рентгеновское излучение таких источников, как Сота, предположительно является тормозным излучением горячего газа. В гл. 15 в связи с реликтовым излучением обсуждается возможность независимого (не по рентгеневскему излучению) определения количества и температуры этого газа. Здесь мы останавливаемся на данном вопросе потому, что можно предположить космологическое происхождение горячего газа, предположить, что это газ, сжатый ударной волной в процессе образования «блина». Этот газ оказался связанным, когда «блин» превратился в скопление (т. е. когда в центральных холодных областях «блина» возникли галактики и звезды и произошла сферизация «блина» — тяготение вдоль поверхности «блина» собрало все вещество в комок, в скопление). Отметим общую закономерность: если газ нагрет до температуры В самом деле, позже
Если газ приобрел температуру
Исследование всеми методами мощных внегалактических источников рентгеновского излучения интересно как само по себе, так и для космологии (и теории образования галактик). Наконец, возможно, по-видимому, обнаружение протоскоплений за счет излучения линии 21 см нейтральным водородом в области «блина», где температура недостаточна для ионизации [Сюняев, Зельдович (19726), Зельдович, Сюняев (1974), Новокрещенова, Рудницкий (1973)]. Если бы удалось обнаружить это излучение и доказать его принадлежность «блину», то красное смещение линии позволило бы определить момент образования «блинов». По приближенной оценке яркостная температура в центре линии может быть порядка Трудность наблюдений связана с тем, что неизвестна абсолютная длина волны, поскольку неизвестно значение образуется сжатый газ. К тому же неизвестно заранее направление поисков: сжатый газ должен наблюдаться при
|
1 |
Оглавление
|