Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 3. Интегральные соотношенияПервое основное уравнение (1.13) пограничного слоя является нелинейным. Поэтому йнтегрирование уравнений пограничного слоя для конкретных задач связано с достаточно большими трудностями, как это было показано на примере пластинки в § 2. Это обстоятельство побудило многих исследователей искать приближённые методы, упрощающие либо задачу изучения движения жидкости в пограничном слое, либо метод отдельных операций вычисления характеристик пограничного слоя. К настоящему моменту в литературе имеется достаточно большое количество различных приближённых методов изучения пограничного слоя. Основная группа этих приближённых методов связана с использованием интегральных соотношений пограничного слоя. Первое интегральное соотношение было установлено Карманом с помощью применения теоремы об изменении количества движения в фиксированном элементе пограничного слоя. Второе соотношение было установлено Л. С. Лейбензоном с помощью применения теоремы об изменении полной энергии в фиксированном элементе пограничного слоя. Обобщение этих соотношений было дано В. В. Голубевым. Дадим вывод этих соотношений, следуя рассуждениям В. В. Голубева. Умножим обе части первого уравнения (1.13) на
Выполняя простейшие вычисления и учитывая, что толщина слоя зависит от переменного х, будем иметь:
Используя граничные условия (1.14) и (1.15) и уравнение несжимаемости, получим:
Принимая во внимание (3.3), подставим выражения (3.2) в (3.1); получим:
Таким образом, интегральное соотношение В. В. Голубева будет иметь следующий вид:
Полагая в соотношении
Рис. 70. Первое слагаемое в левой части представляет собой секундное изменение количества движения в фиксированном элементе пограничного слоя за счёт входа и выхода масс через две боковые границы этого элемента Полагая в соотношении
Первое слагаемое в левой части (3.7) с точностью до множителя Так как давление и скорость внешнего потока U считаются известными функциями от переменного х, то интегральные соотношения (3.5), (3.6) и (3.7) будут содержать две неизвестные функции, из которых первая будет представлять собой распределение основной скорости и по толщине слоя, а вторая — изменение толщины слоя с изменением криволинейной координаты х. При использовании этих интегральных соотношений приходится первую из неизвестных функций в какой-то мере задавать заранее и отдельные коэффициенты её определять из граничных условий. При подстановке в интегральное соотношение (3.5) задаваемой функции распределения скоростей по толщине слоя получится для толщины слоя дифференциальное уравнение первого порядка. В работе Польгаузена распределение скоростей по сечению пограничного слоя задавалось в виде многочлена не выше четвёртой степени. В работе Л. Г. Лойцянского для распределения основных скоростей использовался многочлен шестой степени. В одной из первых работ А. А. Космодемьянского распределение скоростей представлялось в виде и Дополнительные граничные условия устанавливаются на основании непосредственного использования самих уравнений (1.13) для пограничного слоя. Например, если учесть, что на стенке скорости и и v обращаются в нуль, то из первого уравнения (1.13) получим новое граничное условие на стенке в виде
Дифференцируя левую и правую части первого уравнения (1.13) по переменному у, будем иметь:
Сумма первого и третьего слагаемых в левой части на основании уравнения несжимаемости будет обращаться в нуль. Остальные слагаемые в левой части будут обращаться в нуль на стенке; отсюда получим ещё новое дополнительное условие на стенке
Используя граничные условия (1.15), первое уравнение (1.13) для точек верхней границы слоя можно представить в виде
Если положить
и учесть, что из интеграла Бернулли
то из (3.11) получим ещё одно граничное условие
Если бы мы ещё раз продифференцировали равенство (3.9) по переменному у и использовали бы все ранее полученные граничные условия, то получили бы ещё новые дополнительные условия для производных третьего и четвёртого порядка от искомой функции и. Разумеется, что этот процесс получения новых граничных условий можно продолжать и дальше. Подчиняя выбор вида функции распределения по толщине слоя основных скоростей всё большему числу дополнительных граничных условий, мы тем самым можем всё больше и больше приближать задаваемую функцию к действительному решению самих уравнений (1.13) пограничного слоя.
|
1 |
Оглавление
|