Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА XI. УСТОЙЧИВОСТЬ ЛАМИНАРНЫХ ТЕЧЕНИЙ§ 1. Общая постановка вопроса об устойчивостиВ механике, как известно, решения уравнений равновесия или дифференциальных уравнений движения тел или сред определяют класс возможных состояний равновесия и движения, из которых лишь только часть будет представлять собой реально осуществимые состояния. Отбор из всего класса возможных состояний равновесия и движения отдельной группы реально осуществимых состояний производится в механике с помощью исследования устойчивости соответственных решений уравнений. Реально осуществимыми из всего класса возможных состояний будут только те состояния равновесия и движения, которые будут удовлетворять условиям устойчивости. Эти условия устойчивости устанавливаются с помощью ряда методов, из которых наиболее общим и строго обоснованным является метод Ляпунова. В главе IV были рассмотрены простейшие решения точных дифференциальных уравнений установившегося движения вязкой несжимаемой жидкости. На основании сказанного выше эти решения определяют класс пока только возможных простейших установившихся движений вязкой несжимаемой жидкости, которые получили название ламинарных течений. Вопрос же о реальной осуществимости этих возможных простейших движений должен решаться отдельно либо с помощью непосредственной экспериментальной проверки основных особенностей ламинарных течений, либо с помощью теоретических исследований условий устойчивости этих течений. Экспериментальная проверка основных особенностей ламинарного течения, например, в круглой цилиндрической трубе показала, что для осуществимости ламинарного движения необходимо выполнение двух условий. Первое из этих условий заключается в том, что число Рейнольдса не должно превышать своего критического значения, т. е.
При этом иногда различают два критических числа Рейнольдса, одно из которых называют верхним, а второе — нижним. Под верхним критическим числом Рейнольдса подразумевается то его значение, при котором можно ещё наблюдать прямолинейность траекторий всех частиц жидкости при наиболее благоприятных для этого условиях входа в рассматриваемую трубу. Нижнее критическое число Рейнольдса представляет собой то значение числа Рейнольдса, за пределами которого при произвольных условиях входа жидкости в трубу график коэффициента сопротивления трубы на логарифмической диаграмме не будет представляться отрезком прямой, одинаково наклонённой к осям координат. На основании многочисленных опытов обнаружено, что, чем плавнее осуществляется вход жидкости в трубу, тем выше значение верхнего критического числа Рейнольдса. Но при этом оказывается, что при малейшем возмущении потока характер траекторий частиц резко изменяется. Если же число Рейнольдса не превышает значения нижнего критического числа Рейнольдса, то изменение условий входа жидкости в трубу, т. е. наложение возмущений на поток, не вызывает существенных изменений вида графика коэффициента сопротивления трубы на логарифмической диаграмме. Отсюда мы заключаем, что ламинарное течение жидкости будет реально осуществимым, т. е. устойчивым, если число Рейнольдса не превышает своего нижнего критического значения. Второе условие реальной осуществимости ламинарного течения связано с длиной начального участка трубы. Длина начального участка трубы должна быть достаточной для того, чтобы на протяжении этого участка всякого рода возмущения, неизбежно возникающие при входе в трубу, должны почти полностью исчезнуть, а основные признаки ламинарного течения почти полностью развиться. Как уже указывалось в главе X, длина начального участка трубы по результатам ряда экспериментов находится в прямой зависимости от числа Рейнольдса и от рчдиуса трубы, т. е.
где а — числовой множитель. Таким образом, экспериментальная проверка возможности осуществления ламинарного течения вязкой несжимаемой жидкости в круглой цилиндрической трубе привела к необходимости рассматривать этот вопрос с двух несколько различных точек зрения. С одной стороны, вопрос об осуществимости ламинарного течения в трубе непосредственно связывался с условиями устойчивости такого рода течения. С другой же стороны, этот вопрос тесно увязывался с условиями возможности развития основных признаков ламинарного течения в трубе. Благодаря этому обстоятельству теоретические исследования вопроса об осуществимости ламинарных течений также велись в двух различных направлениях. Основная часть теоретических исследований была направлена в сторону выяснения необходимых и достаточных условий устойчивости различных ламинарных течений вязкой несжимаемой жидкости. А вторая часть теоретических исследований была направлена в сторону выявления основных особенностей развития ламинарного течения на начальном участке труб и диффузоров. О теоретических исследованиях, посвящённых развитию ламинарного течения на начальном участке, была речь в главе X. В данной же главе будут вкратце рассмотрены теоретические исследования по вопросу об устойчивости ламинарного течения в нескольких простейших случаях. Теоретические исследования по вопросу об устойчивости ламинарного течения вязкой несжимаемой жидкости и об условиях перехода этого течения в турбулентное были начаты ещё Рейнольдсом, Рэлеем, Кельвином, Лоренцем и были продолжены многими исследователями. Подробный перечень статей по этому вопросу приводится в конце первой статьи Лина. Из работ, опубликованных за последние годы по этому вопросу, можно назвать статью В. Беляковой. Многочисленные теоретические исследования по вопросу об устойчивости ламинарных течений, опубликованные в различных журналах и книгах по гидродинамике, можно распределить на две группы. К первой группе относятся те исследования, в которых преимущественно использовался метод малых колебаний и решение вопроса об устойчивости ламинарных течений сводилось к исследованию корней характеристического трансцендентного уравнения, явный вид которого для большинства случаев можно было установить лишь приближённо. Существо метода малых колебаний заключается в том, что на исследуемое ламинарное течение накладывается нестационарное поле малых скоростей, удовлетворяющих линеаризированным дифференциальным уравнениям. Последние уравнения получаются из полных уравнений движения вязкой жидкости после замены проекций скорости и давления через суммы проекций двух векторов скоростей и давлений исследуемого течения и наложенного поля возмущений и последующего отбрасывания из уравнений слагаемых, содержащих произведения производных по координатам от проекций вектора скорости поля возмущений. Затем рассматривается частный вид поля малых возмущений, отвечающий тому частному решению линеаризированных уравнений, в котором в качестве множителя входит показательная функция
содержащая в показателе время t и основную координату оси, параллельной скорости течения. При этом предполагается, что неизвестный множитель а может принимать только действительные значения, а для множителя (3 допустимы и комплексные значения. На частное решение линеаризированных уравнений поля возмущений сомножителем (1.3) в большинстве случаев накладывались граничные условия прилипания частиц жидкости к стенкам. Дальнейшая задача сводилась к решению обыкновенного дифференциального уравнения, к удовлетворению граничных условий и исследованию полученного с помощью последних характеристического уравнения, связывающего множители Ко второй группе теоретических исследований по вопросу об устойчивости ламинарных течений относятся исследования, в которых использовался преимущественно энергетический метод. При использовании этого метода на ламинарное течение накладывалось также поле возмущений, но оно выбиралось не из частных решений линеаризированных уравнений, а из условия минимума некоторого выражения, содержащего интегралы от кинетической энергии и квадрата вихря. В частности, это выражение представляло собой отношение того количества энергии, которое переходит из основного поля скоростей в поле скоростей возмущений, к тому количеству кинетической энергии, которое рассеивается благодаря вязкости. При некотором видоизменении постановки вопроса об определении распределения скоростей в поле возмущений задача приводится к задачам вариационного исчисления. Этот метод был использован в работах Рейнольдса, Лоренца, Орра, Кармана, Сайнджа и др.
|
1 |
Оглавление
|