Главная > Временные ряды. Обработка данных и теория
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

1.2. Основания для применения гармонического анализа

Главным методом, который будет использоваться при анализе временных рядов, является гармонический анализ. Объясняется это тем, что в дальнейшем мы будем рассматривать только ряды, описывающие результаты экспериментов, не привязанных к конкретному началу отсчета времени. Другими словами, мы намерены ограничиться экспериментами, инвариантными по отношению к временным сдвигам. Отсюда следует, например, что доля значений попавших в некоторый интервал должна быть примерно такой же, как доля значений попавших в интервал для всех

Можно считать, что типичные физические эксперименты обладают свойством временной инвариантности. Так, для многих практических целей неважно, в какой именно день начата серия измерений силы тяжести. Беглый анализ рядов, упоминавшихся в предыдущем параграфе, показывает: температурный ряд на рис. 1.1.1 вполне приемлемо считать обладающим таким свойством инвариантности во времени; отрезки сейсмических наблюдений тоже кажутся на первый взгляд стационарными; ряды, описывающие объем экспорта, заведомо не похожи на стационарные, и с меньшей уверенностью это можно сказать про ряд, изображающий число солнечных пятен. Поведение рядов, описывающих объем экспорта, является типичным для большинства рядов, связанных с социально-экономическими процессами. Поскольку люди извлекают уроки из прошлого и соответственно изменяют свое поведение, ряды, относящиеся к человеческой деятельности, вообще говоря, не являются инвариантными во времени. Позднее мы обсудим методы, позволяющие выделить стационарную компоненту из нестационарных рядов, однако техника

этой книги главным образом нацелена на анализ стационарных процессов.

Потребовав, чтобы при сдвигах аргумента поведение интересующих нас функций было в некотором смысле элементарным, можно получить определенные аналитические следствия. Пусть — действительная Или комплексная функция, определенная при Если потребовать, чтобы

    (1.2.1)

то, очевидно, будет постоянной величиной. Поэтому для отбора функций, имеющих простое поведение при временных сдвигах, придется накладывать менее жесткие ограничения. Потребуем вместо (1.2.1) выполнения условия

Подставив получаем после нескольких шагов при

    (1.2.3)

или в случае

    (1.2.4)

В обоих случаях, положив , где а — действительное или комплексное число, мы видим, что общее решение уравнения (1.2.2) можно записать в виде

    (1.2.5)

и что . Ограниченные решения уравнения (1.2.2), как видно, получаются при где X действительно, . Таким образом, поиски функций, просто изменяющихся при сдвигах аргумента, приводят нас к гармоникам с действительным параметром X. Этот параметр X называется частотой гармоники. Если же оказывается, что

то

где . Другими словами, если интересующая нас функция является суммой гармоник, то ее поведение при сдвигах аргумента также легко описывается. Поэтому если в результате инвариантного во времени эксперимента получаются детерминированные функции времени, то естественно рассматривать функции, представимые в виде (1.2.6). Изучение таких функций является предметом гармонического анализа или фурье-анализа [Bochner (1959), Zygmund (1959), Hewitt, Ross (1963), Wiener (1933), Edwards (1967)].

В § 2.7 мы увидим, что фильтры — важный класс операций над временными рядами — также проще всего описываются и исследуются средствами гармонического анализа.

Требование временной инвариантности применительно к экспериментам, результаты которых описываются случайными (стохастическими) функциями , приводит к рассмотрению специального класса экспериментов. Для них семейства случайных величин , имеют одинаковые распределения при всех Результаты таких экспериментов называются стационарными стохастическими процессами [Doob (1953), Wold (1938), Хинчин (1934)].

1
Оглавление
email@scask.ru