Главная > Методы принятия решений
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

2.4. РАСПРЕДЕЛЕНИЕ ПУАССОНА

2.4.1. Что такое распределение Пуассона

Например, регистрируется количество дорожных происшествий за неделю на определенном участке дороги. Это число представляет собой случайную величину, которая может принимать значения: (верхнего предела нет). Число дорожных происшествий может быть каким угодно большим. Если рассмотреть какой-либо короткий временной промежуток в течение недели, скажем минуту, то происшествие либо произойдет на его протяжении, либо нет. Вероятность дорожного происшествия в течение отдельно взятой минуты очень мала, и примерно такая же она для всех минут.

Распределение вероятностей числа происшествий описывается формулой:

где m — среднее количество происшествий за неделю на определенном участке дороги; е — константа, равная 2,718...

Характерные особенности данных, для которых наилучшим образом подходит распределение Пуассона, следующие:

1. Каждый малый интервал времени может рассматриваться как опыт, результатом которого является одно из двух: либо происшествие (“успех”), либо его отсутствие (“неудача”). Интервалы столь малы, что может быть только один “успех” в одном интервале, вероятность которого мала и неизменна.

2. Число “успехов" в одном большом интервале не зависит от их числа в другом, т.е. “успехи” беспорядочно разбросаны по временным промежуткам.

3. Среднее число “успехов” постоянно на протяжении всего времени. Распределение вероятностей Пуассона может быть использовано не только при работе со случайными величинами на временных интервалах, но и при учете дефектов дорожного покрытия на километр пути или опечаток на страницу текста. Общая формула распределения вероятностей Пуассона:

где m — среднее число “успехов” на единицу.

В таблицах распределения вероятностей Пуассона значения табулированы для определенных значений m и

Пример 2.7. В среднем на телефонной станции заказывают три телефонных разговора в течение пяти минут. Какова вероятность, что будет заказано 0, 1,2, 3, 4 или больше четырех разговоров в течение пяти минут?

Решение.

Применим распределение вероятностей Пуассона, так как:

1. Существует неограниченное количество опытов, т.е. маленьких отрезков времени, когда может появиться заказ на телефонный разговор, вероятность чего мала и постоянна.

2. Считается, что спрос на телефонные разговоры беспорядочно распределен во времени.

3. Считается, что среднее число телефонных разговоров в любом -минутном отрезке времени одинаково.

В этом примере среднее число заказов равно 3 за 5 минут. Отсюда, распределение Пуассона:

При распределении вероятностей Пуассона, зная среднее число “успехов” на 5-минутном промежутке (например как в примере 2.7), для того чтобы узнать среднее число “успехов” за один час, нужно просто умножить на 12. В примере 2.7 среднее число заказов в час составит: 3 х 12 = 36. Аналогично, если требуется определить среднее число заказов в минуту:

Пример 2.8. В среднем за пять дней рабочей недели на автоматической линии происходят 3,4 неполадок. Какова вероятность двух неполадок в каждый день работы? Решение.

Можно применить распределение Пуассона:

1. Существует неограниченное количество опытов, т.е. малых промежутков времени, в течение каждого из них может произойти или не произойти неполадка на автоматической линии. Вероятность этого для каждого промежутка времени мала и постоянна.

2. Предполагается, что неполадки беспорядочно расположены во времени.

3. Предполагается, что среднее число неполадок в течение любых пяти дней постоянно.

Среднее число неполадок равно 3, 4 за пять дней. Отсюда число неполадок в день:

Следовательно,

Поэтому

Пример 2.9. В компании, сдающей на прокат две машины, каждодневный спрос на автомобили подчиняется распределению Пуассона и в среднем составляет 1,3 машины в день. Предположим, машины используются в равной степени. Какова вероятность, что в любой из дней:

1) ни на одну машину не будет заказов;

2) одна из машин совершенно точно будет арендована, а другая — то ли будет, то ли нет;

3) на обе поступят заказы.

Решение.

Число заказов на машину в день — это дискретная величина. Вероятность заказов такова:

(нет заказов на машины) = Р(спрос за день равен 0):

2. Р(ни один автомобиль не заказан) - Р(спрос на одну из машин 0 или 1, а на другую — 1)

Примечание: Р(другая машина арендована) = 1/2, так как машины используются в равной степени.

Categories

1
Оглавление
email@scask.ru