3.5. «ДЕРЕВО» РЕШЕНИЙ
Примеры, которые мы рассматривали до сих пор в этой главе, включали в себя единственное решение. Однако на практике результат одного решения заставляет нас принимать следующее и т.д. Эту последовательность нельзя выразить таблицей доходов, поэтому нужно использовать какой-то другой процесс принятия решений.
Схема “дерево” решений очень похожа на схему "дерево” вероятностей. Ее используют, когда нужно принять несколько решений в условиях неопределенности, когда каждое решение зависит от исхода предыдущего или исходов испытаний. Составляя “дерево" решений, нужно нарисовать “ствол” и “ветви”, отображающие структуру проблемы. Располагаются “деревья” слева направо. “Ветви” обозначают возможные альтернативные решения, которые могут бьггь приняты, и возможные исходы, возникающие в результате этих решений. На схеме мы используем два вида “ветвей”: первый — пунктирные линии, соединяющие квадраты возможных решений, второй — сплошные линии, соединяющие кружки возможных исходов.
Квадратные “узлы” обозначают места, где принимается решение, круглые “узлы” — появление исходов. Так как принимающий решение не может влиять на появление исходов, ему остается лишь вычислять вероятность их появления.
Когда все решения и их исходы указаны на “дереве", просчитывается каждый из вариантов, и в конце проставляется его денежный доход. Все расходы, вызванные решением, проставляются на соответствующей “ветви”.
Пример 3.5. Для финансирования проекта бизнесмену нужно занять сроком на один год 15000 ф. ст. Банк может одолжить ему эти деньги под 15% годовых или вложить в дело со 100%-ным возвратом суммы, но под 9% годовых. Из прошлого опыта банкиру известно, что 4% таких клиентов ссуду не возвращают. Что делать? Давать ему заем или нет? Перед вами пример задачи с одним решением, поэтому можно воспользоваться как таблицей доходов, так и “деревом”. Рассмотрим оба варианта.
Решение 1 (по таблице доходов).
Максимизируем ожидаемый в конце года чистый доход, который представляет собой разность суммы, полученной в конце года, и инвестированной в его начале. Таким образом, если заем был выдан и возвращен, то чистый доход составит:
Таблица 3.23. Чистый доход в конце года, ф. ст.
Если банк решает выдать заем, то максимальный ожидаемый чистый доход равен 1560 ф. ст.
Решение 2 (по “дереву" решений).
В данном случае также используем критерий максимизации ожидаемого в конце года чистого дохода.
Рис. 3.2. “Дерево” решений для примера 3.5
Далее расчет ведется аналогично расчетам по таблице доходов. Ожидаемый чистый доход в кружках А и В вычисляется следующим образом:
В кружке А:
В кружке Б:
Поскольку ожидаемый чистый доход больше в кружке А, то принимается решение выдать заем.