Главная > Методы принятия решений
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

1.2.3. Как найти значение вероятности

Зная, что вероятность можно измерить, попробуем выразить ее в цифрах. Существуют три возможных пути.

Рис. 1.1. Измерение вероятности

ВЕРОЯТНОСТЬ, ОПРЕДЕЛЯЕМАЯ СИММЕТРИЕЙ

Существуют ситуации, в которых возможные исходы равновероятны. Например, при бросании монеты один раз, если монета стандартная, вероятность появления «орла» или «решки» одинакова, т.е. Р(«орел») = Р(«решка»). Так как возможны лишь два исхода, то Р(«орел») + Р(«решка») = 1, следовательно, Р(«орел») = Р(«решка») = 0,5.

В экспериментах, где исходы имеют равные шансы появления, вероятность события Е, Р (Е) равна:

Пример 1.1. Монета брошена три раза. Какова вероятность двух «орлов» и одной «решки»?

Решение.

Для начала найдем все возможные исходы: Чтобы убедиться, все ли возможные варианты мы нашли, воспользуемся диаграммой в виде дерева (см. гл. 1 раздел 1.3.1).

Итак, имеются 8 равновозможных исходов, следовательно, вероятность из них равна 1/8. Событие Е — два «орла и «решка — произошло три . Поэтому:

Пример 1.2. Стандартная игральная кость брошена два раза. Какова вероят того, что сумма очков равна 9 или больше?

Решение.

Найдем все возможные исходы.

Таблица 1.2. Общее количество очков, получаемое при двукратном бросании игральной кости

Итак, в 10 из 36 возможных исходов сумма очков равна 9 или следовательно:

ВЕРОЯТНОСТЬ, ОПРЕДЕЛЯЕМАЯ ЭМПИРИЧЕСКИ

Пример с монетой из табл. 1.1 наглядно иллюстрирует механизм определ вероятности.

При общем числе экспериментов из которых удачных, верояп требуемого результата подсчитывается так:

Отношение есть относительная частота появления определен результата при достаточно продолжительном эксперименте. Вероятность подсчитывается либо на основе данных проведенного эксперимента, основе прошлых данных.

Пример 1.3. Из пятисот протестированных электроламп 415 проработали более 1000 часов. На основе данных этого эксперимента можно заключить, что вероятность нормального функционирования лампы данного типа более 1000 часов составляет:

Примечание. Контроль имеет разрушающий характер, поэтому не все лампы могут быть проверены. Если бы была протестирована только одна лампа, то вероятность составила бы 1 или 0 (т.е. сможет проработать 1000 часов или нет). Отсюда следует необходимость повторения эксперимента.

Пример 1.4. В табл. 1.3 приведены данные о стаже мужчин, работающих в фирме:

Таблица 1.3. Стаж работы мужчины

Какова вероятность того, что следующий принятый на работу в фирму человек проработает не меньше двух лет:

Решение.

Из таблицы видно, что 38 из 100 работников работают в компании больше двух лет. Эмпирическая вероятность того, что следующий работник останется в компании на срок более двух лет равна:

При этом мы предполагаем, что новый работник «типичен, а условия работы неизменны.

СУБЪЕКТИВНАЯ ОЦЕНКА ВЕРОЯТНОСТИ

В бизнесе часто возникают ситуации, в которых отсутствует симметрия, и экспериментальных данных тоже нет. Поэтому определение вероятности благоприятного исхода под влиянием взглядов и опыта исследователя носит субъективный характер.

Пример 1.5.

1. Эксперт по инвестициям считает, что вероятность получения прибыли в течение первых двух лет равна 0,6.

2. Прогноз менеджера по маркетингу: вероятность продажи 1000 единиц товара в первый месяц после его появления на рынке равна 0,4.

Categories

1
Оглавление
email@scask.ru