Главная > Оптимальные статистические решения
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 12.7. Неограниченные процедуры последовательного решения

Отбросим теперь предположение о том, что число наблюдений ограничено, т. е. рассмотрим задачи решения, в которых статистик может выбирать процедуры из всего класса процедур, удовлетворяющих условию (4) § 12.2, т. е. с вероятностью 1 оканчивающихся за конечное время.

В задачах последовательного решения такого рода, где нет верхней границы для числа наблюдений, при построении оптимальной процедуры последовательного решения метод индукции назад непосредственно не применим. На самом деле перед тем, как пытаться строить оптимальную процедуру последовательного решения, нам надо сначала установить существование оптимальной процедуры в классе Затем уже можно исследовать свойства оптимальной процедуры и обсуждать методы ее построения. Следует отметить, что в некоторых задачах, где статистик может пользоваться любой решающей процедурой, оптимальная процедура последовательного решения из класса в действительности ограничена. Однако даже это свойство зачастую трудно установить.

Мы рассмотрим общую задачу последовательного решения, т. е. задачу, уже исследовавшуюся в используя обозначения этих параграфов. Таким образом, мы предполагаем, что каждое из наблюдений стоит с единиц и риск байесовского решения из когда апостериорная о. в. п. параметра есть равен Так как мы считаем, что функция потерь неотрицательна, то для всякой о. в. п. Для доказательства существования оптимальной процедуры последовательного решения можно потребовать, чтобы функция была ограничена снизу. Достаточно,

однако, предположить, что мажорирует некоторую подходящую функцию; условие неотрицательности также может, быть несколько ослаблено.

Эквивалентность процедур статистического решения и моментов остановки. Мы считаем, что при окончании выбора статистик всегда принимает байесовское решение из Поэтому всякая процедура последовательного решения определяется заданием правила остановки. Для каждой бесконечной последовательности значений обозначим через общее числа наблюдений, проводимых до окончания выбора, если последовательно были наблюдены значения Таким образом, если то выбор оканчивается посл -го наблюдения, но не раньше.

Решение о продолжении или окончании выбора после проведения первых наблюдений, очевидно, должно зависеть толька от значений этих наблюдений, а не от значений каких-либо последующих наблюдений. Поэтому, если для некоторой бесконечной последовательности другая бесконечная последовательность, для которой при то . В частности, решение вопроса о том, делать первое наблюдение или принимать решение из без наблюдений, должно быть вынесено до начала выбора. Поэтому или для всех последовательностей или не существует ни одной последовательности для которой это равенство выполнено.

Функция заданная на пространстве всех бесконечных последовательностей и удовлетворяющая указанным свойствам называется моментом остановки. Если процедура последовательного решения из класса А, то с вероятностью 1 выбор рано или поздно окончится. Поэтому значения момента остановки конечны для каждой бесконечной последовательности за возможным исключением некоторых последовательностей, образующих событие нулевой вероятности. Обратно, всякий момент остановки с конечными, за возможным исключением события нулевой вероятности, значениями определяет процедуру последовательного решения из класса А. Таким образом, процедуры последовательного решения эквивалентны моментам остановки. В силу этой эквивалентности мы можем использовать один и тот же символ для обозначения как процедуры, так и соответствующего момента остановки.

Далее, момент остановки можно интерпретировать как случайное число наблюдений, требуемых данной процедурой. Поэтому мы будем обозначать через и процедуру последовательного решения, и случайное число наблюдений, проводимых согласно этой процедуре. Для процедуры и априорного

распределения параметра общий риск может быть теперь записан в виде

После наблюдения значений в соответствии с предписанием процедуры средний риск от продолжения процедуры включая цену первых наблюдений, можно обозначить через Как мы уже отмечали, события можно рассматривать не только как подмножества пространства но и как подмножества пространств или пространства . Если то

В следующих двух параграфах мы докажем существование оптимальной процедуры решения т. е. процедуры со свойством

1
Оглавление
email@scask.ru