Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
24.4. О механизмах самоорганизацииОбычно на линейной стадии нарастает широкий спектр пространственных возмущений. Однако, когда неустойчивости резонансны, т. е. нарастают лишь возмущения определенного пространственного масштаба, не они зачастую определяют масштаб возникших структур, а их последующее взаимодействие с другими. Таким образом, главным здесь представляются не особенности неустойчивостей (хотя и они важны), а механизмы отбора и формирования структур на линейной стадии. Здесь же довольно мало конкретных результатов, поэтому мы ограничимся обсуждением лишь простейших механизмов формирования различных пространственных масштабов и их взаимной синхронизации. Сделаем это на примере бенаровской конвекции. Ограничимся при нашем рассмотрении случаем слабого превышения над порогом конвективной неустойчивости синусоидальных мод, не учитывая их пространственных гармоник, — при малой надкритичности нелинейность также можно считать малой. Если бы дополнительная нелинейность, связанная с зависимостью вязкости от температуры, отсутствовала, в подогреваемом плоском слое жидкости устанавливалась бы простейшая конвективная структура в виде валов (см. гл. 21). Пространственный масштаб этих валов определяется, как мы уже говорили, конкуренцией мод с близкими пространственными масштабами. В случаях, когда можно не учитывать граничные условия, ориентация этих валов на плоскости произвольна и определяется лишь начальными условиями. Дополнительная квадратичная нелинейность, возникающая из-за зависимости
Для действительных амплитуд можно получить уравнения
Таким образом, линейная неустойчивость переходит во взрывную, вызванную взаимодействием параметрических связанных мод на диссипативной нелинейности Таким образом, из приведенного примера видно, что именно синхронные взаимодействия между модами определяют форму возникающих в результате неустойчивостей пространственных структур. Конкуренция же обеспечивает устойчивость этих структур по отношению к нерезонансным возмущениям. Помимо поисков и открытий новых видов структур и исследования механизмов их образования в теории самоорганизации сегодня появилась новая увлекательная область — направленная организация структур с помощью внешних полей. Чтобы проиллюстрировать нетривиальность задач подобного рода, приведем один сравнительно простой пример. Рассмотрим влияние статического периодического в пространстве поля на диссипативные структуры в одномерной среде. Исходным будет уравнение диффузии
При В присутствии периодической неоднородности Анализ поведения диссипативных структур или бегущих импульсов во внешних полях представляет собой частный случай задачи о поведении когерентных образований в поле друг друга, т. е. задачи об их взаимодействии. Сюда относятся задачи о столкновении нервных импульсов, фронтов горения, цилиндрических и спиральных волн. Очевидный интерес представляет анализ взаимодействия структур разного типа и природы. В этих направлениях уже имеются определенные успехи. Отметим, в частности, эксперимент Агладзе и Кринского [25], в котором на примере двумерной реакции Белоусова-Жаботинского наблюдалось взаимодействие спиральных вихрей со структурами типа бенаровских ячеек. В результате такого взаимодействия реакция переходила в стохастический режим, появлялась «химическая» турбулентность. В [29, с. 7-44] обсуждены проблемы, связанные с формированием автоструктур (не зависящих от начальных и граничных условий локализованных образований) в неравновесных диссипативных средах, и исследована динамика пространственных ансамблей таких структур. В частности, проведен анализ простой модели — одномерного ансамбля не взаимно связанных структур, представляющих собой цепочку, состоящую из элементов, динамика которых описывается одномерным отображением типа параболы. Напомним, что такое отображение описывает динамику самых различных физических систем, демонстрирующих при изменении параметра цепочку бифуркаций удвоения периода. Пусть параметры цепочки выбраны так, что в первом элементе реализуется режим регулярных колебаний периода Т. При некотором номере В [31] было высказано предположение, что подобные модели можно использовать для объяснения развития хаоса не только в гидродинамических системах (цепочка связанных друг с другом вихрей Тейлора, на которых возбуждены азимутальные моды; ансамбль спиральных вихрей в пограничном слое на вращающемся конусе и др.), но и в электронных потоках. Последнее нашло подтверждение в экспериментах [32] с цилиндрическим кольцевым электронным пучком, дрейфующим в продольном постоянном магнитном поле.
|
1 |
Оглавление
|