Главная > Введение в теорию колебаний и волн
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

14.3. Релаксационные автоколебания. «Быстрые» и «медленные» движения

При сильной нелинейности колебания становятся релаксационными, состоящими из участков быстрых и медленных движений. Для нахождения таких разрывных колебаний Мандельштам и Папалекси предложили использовать «гипотезу скачка», учитывающую, что при перескоках энергия меняется непрерывно. В качестве примера рассмотрим уравнение Рэлея

где — велико. Введением нового времени и переменной можно перевести параметр в коэффициент при старшей производной:

Теперь при старшей производной стоит малый параметр Попытаемся найти асимптотическую форму решения уравнения (14.8) при Запишем уравнение (14.8) в виде системы двух уравнений первого порядка:

Заметим, что при фазовым пространством системы будет прямая х, закон движения по которой определяется видом функции

Рис. 14.5. Фазовое пространство для системы, описываемой уравнением (14.9) при а — функция определяющая закон движения вдоль х; б - направления движения в интервале

приведенной на рис. 14.5 а. В силу неоднозначности этой функции направление движения в интервале однозначно не определено (рис. 14.56). Другими словами, система получилась динамически противоречивой: единственное состояние равновесия при неустойчиво, а куда переходит система из точек

— неизвестно.

Попробуем снять это противоречие, учитывая, что параметр х имеет хотя и малое, но конечное значение. Уравнение интегральных кривых системы (14.9) имеет вид

При вне кривой или . Интегральными кривыми будут прямые а направления движения по ним определяются вторым уравнением системы (14.9). Из последнего следует, что скорость движения при очень велика. Это так называемые «быстрые» движения. «Медленные» движения происходят на самой кривой закон движения определяется первым уравнением системы (14.9). Фазовый портрет изображен на рис. 14.6 а. Верхняя и нижняя ветви кривой медленных движений устойчивы по отношению к быстрым движениям, средняя неустойчива. В точках происходит «скачок» с одной ветви кривой на другую. При любых начальных условиях система выходит на предельный цикл состоящий из участков «быстрых» и «медленных» движений. При этом система совершает релаксационные колебания, форма которых изображена на рис. 14.6 б. Период колебаний Т можно найти, подсчитав время движения по предельному циклу [5]. Временем быстрых движений можно пренебречь. Из уравнений медленных движений найдем

Таким образом, учет малого параметра оказался существенным для выяснения динамики системы. Всегда ли это так? Ясно, что если

Рис. 14.6. Фазовый портрет (а) и форма (б) релаксационных колебаний

введение малого параметра не повышает порядка уравнений, то учет его, если система в определенном смысле устойчива (см. гл. 15), не играет роли. Но даже если порядок уравнения повышается, то это оказывается несущественным в том случае, когда вся кривая медленных движений устойчива по отношению к быстрым движениям — при этом изображающая точка на фазовой плоскости очень быстро придет в малую (порядка окрестность кривой медленных движений, и динамика системы будет определяться только медленными движениями [4]. Аналитическое условие этого легко получить. Действительно, в общем виде система двух уравнений первого порядка с малым параметром при производной имеет вид Уравнения быстрых движений имеют вид уравнения медленных движений имеют вид Кривая медленных движений является геометрическим местом состояний равновесия для быстрых движений. Очевидно, что все участки этой кривой будут устойчивы по отношению к быстрым движениям, если для всех точек кривой.

В заключение заметим, что, поскольку практически весь опыт классической теории (по крайней мере для систем с немалой нелинейностью) был связан с анализом автоколебаний на фазовой плоскости, возможность установления периодических движений, отвечающих предельному циклу, ассоциировалась исключительно с такими диссипативными системами, в которых незатухающие колебания совершались лишь за счет непериодических источников энергии. Еще несколько лет назад никто бы не решился назвать автогенератором нелинейный

осциллятор с трением, находящийся под действием периодической силы:

Однако это — автогенератор: такой нелинейный осциллятор демонстрирует незатухающие колебания, параметры которых (интенсивность, частота, а в более общем случае спектр и т. д.) не зависят от конечного изменения начальных условий и слабо зависят от изменения внешней силы. В частности, в фазовом пространстве неавтономной системы, описываемой уравнением (14.10), имеются устойчивые периодические движения, которым, если смотреть стробоскопически через период внешней силы, соответствуют (в отображении Пуанкаре) устойчивые неподвижные точки.

Интенсивные исследования нелинейных диссипативных систем с трехмерным фазовым пространством позволили в последние годы обнаружить совершенно новый класс автоколебательных систем. Это автогенераторы шума — диссипативные системы, совершающие незатухающие хаотические колебания, колебания со сплошным спектром за счет энергии нешумовых источников. Замечательно, что даже столь привычный нам осциллятор (14.10) в широкой области параметров является автогенератором шума. Открытие стохастических автоколебаний — это, пожалуй, наиболее яркое достижение современной теории. Почему же оно появилось только сейчас? Дело в том, что со времен Пуанкаре до недавнего времени предельный цикл был единственным примером нетривиального притягивающего множества в фазовом пространстве нелинейных диссипативных систем. Правда, уже довольно давно были обнаружены сложные многопетлевые предельные циклы. Устойчивые многопериодические движения были обнаружены при исследовании синхронизации автогенераторов.

По-видимому, обнаружение сложных предельных циклов, а затем и бифуркаций, показывающих дорогу к их дальнейшему усложнению, уже могло бы послужить причиной расширения представлений об автоколебаниях. Однако фактически это произошло несколько позже, когда появились результаты численных экспериментов, доказывающих существование «непериодических разовых потоков» в диссипативных неравновесных системах [6]. Практически в то же время в абстрактной теории динамических систем появились новые математические объекты — сложные аттракторы, названные Рюэлем и Такенсом «странными».

Примером странного аттрактора — притягивающего множества, на котором нет устойчивых траекторий и где все они ведут себя сложно

и запутанно, — служит притягивающая структура из седловых циклов (когда все траектории, сматывающиеся с них, стремятся к циклам той же структуры).

Замечательно, что сейчас, когда сформировалась новая точка зрения на стохастические автоколебания, они обнаруживаются в очень простых, по существу, классических системах, например таких, как связанные автогенераторы или релаксационный генератор с полутора степенями свободы. Их находят, потому что теперь знают, что именно искать.

1
Оглавление
email@scask.ru