Главная > Введение в теорию колебаний и волн
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

19.3. Солитоны как частицы

Будучи довольно сложными образованиями, солитоны и солитонные периодические решения (кноидальные волны) при взаимодействии друг с другом должны были бы вести себя очень сложно. Однако, судя по многим физическим и численным экспериментам, это не всегда так. Зачастую, наоборот, солитоны при взаимодействии ведут себя на удивление просто — отталкиваются, притягиваются или колеблются друг относительно друга (рис. 19.9), совсем как классические частицы! Как недавно было установлено, эта внешняя аналогия оказывается довольно глубокой по отношению к слабо взаимодействующим солитонам (или кноидальным волнам). Если различие скоростей (или, что то же самое, энергий) солитонов мало и на протяжении всего процесса расстояние между их максимумами остается большим по сравнению с эффективной шириной, их взаимодействие в буквальном смысле аналогично взаимодействию частиц и описывается уравнениями Ньютона. Солитон в поле «хвоста» другого солитона ведет себя, как шарик в желобе. Например, для пары солитонов получается уравнение [16]

где — расстояние между максимумами солитонов, описывает силовое поле хвоста одного солитона в месте расположения другого, зависимость скорости солитона от энергии. Уравнения, подобные (19.19), при малости взаимодействия выводятся из исходных уравнений для волн путем представления поля в окрестности каждого солитона (его параметры считаются медленно изменяющимися) в виде асимптотического ряда с использованием затем требования ограниченности слагаемых этого ряда.

Рис. 19.9. Столкновение ионно-акустических солитонов — концентрация частиц)

Рис. 19.10. Осциллирующая пара солитонов

После того как аналогия «солитоны-частицы» установлена (т. е. получено уравнение (19.19)), для описания взаимодействия солитонов достаточно знать лишь вид силовой функции , т. е. характер «хвостов» солитонов. Если функция монотонна, то солитоны отталкиваются либо притягиваются. Большинство найденных точных решений иллюстрирует отталкивание солитонов. Если же солитоны имеют осциллирующие «хвосты», как, например, солитоны капиллярногравитационных волн на мелкой воде или в нелинейной искусственной линии передачи с индуктивной связью между звеньями, то функция знакопеременна и солитоны то отталкиваются, то притягиваются, образуя осциллирующую пару (связанное состояние; рис. 19.10).

Аналогичным образом могут быть рассмотрены процессы взаимодействия и большого числа однотипных солитонов, поскольку характер «хвостов» не зависит от числа находящихся на нем солитонов.

Добавим, что эта аналогия между нелинейными волнами и колебаниями уже не столь тривиальна, как обсуждавшиеся нами ранее модовые аналоги.

1
Оглавление
email@scask.ru